
NASA Conference Publication 205 5

LOMJ COPY : RETUw
4.18
N.

Engineering and Scientific
Data Management

Proceedings of a conference
held at Langley Research Center
Hampton, Virginia, May 18-19, 1978

NASA

. .-.

e

@
=rz=

NASA Conference Publication 205 5

Engineering and Scientific
Data Management

Proceedings of a conference sponsored by
the Langley Research Center, the Institute
for Computer Application in Science and
Engineering (ICASE), and The George
Washington University Joint Institute
for Advancement of Flight Sciences,
Hampton, Virginia, and held at Langley
Research Center, May 18-19, 1978

s

National Aeronautics
and Space Administration

Scientific and Technical
Information Office

1978

.i .._.., _ -..--.
17

_----- _..... ..-.... . .

,1 1
II Ii

i

i PREFACE
ii
i
i 1: :I. Management of data has achieved maturity in many areas, such as airline

reservations, parts inventory, personal records, and banking transactions. This
data management capability, however, does not appear well suited for managing
the highly dynamic characteristics of data associated with engineering and sci-
entific applications. There is a pressing need to advance the technology for
managing engineering and scientific data by providing a better understanding
of its special requirements and by assessing current and future capabilities
for its management. 9% provide a forum for recent noteworthy advances in the
computer handling of engineering and scientific data and to create an atmosphere
for interaction between the developers of engineering and scientific data manage-
ment systems and the engineering and scientific users. This conference on
Engineering and Scientific Data Management was sponsored by the NASA Langley
Research Center, the Institute for Computer Applications in Science and Engineer-
ing (ICASE), and The George Washington University Joint Institute for Advance-
ment of Flight Sciences.

This document contains the manuscripts of the presentations which were sub-
mitted for publication and the transcripts of the four panel discussions. To
maintain the conversational tone of the discussion, the panel discussions were
transcribed directly from the recordings and have not been edited. The follow-
ing subjects were addressed:

(1) Engineering and Scientific Data Management Needs
(2) Application of Data Management Systems to Engineering Data
(3) Application of Data Management Systems to Scientific Data
(4) Current Research and Development Efforts

The members of the conference committee are as follows:

David D. Loendorf, Coordinator

Patricia L. Sawyer, Co-coordinator
Richard S. Brice

Robert E. Fulton
Ronnie E. Gillian
James M. Ortega
John J. Rehder
Olaf 0. Storaasli
Floyd S. Shipman
Robert G. Voigt

Susan J. Voigt
Alan W. Wilhite

Structures Laboratory, AVRADCOM
Research and Technology
Laboratories

NASA Langley Research Center
The George Washington University Joint

Institute for Advancement of Flight
Sciences

NASA Langley Research Center
NASA Langley Research Center
North Carolina State University
NASA Langley Research Center
NASA Langley Research Center
NASA Langley Research Center
Institute for Computer Applications

in Science and Engineering (ICASE)
NASA Langley Research Center
NASA Langley Research Center

iii

Use of trade names or names of manufacturers in this report does not
constitute an official endorsement of such products or manufacturers, either
expressed or implied, by the National Aeronautics and Space Administration.

iv

i
‘y;

CONTENTS
II
!I j RPREFACE . iii
f

SESSION I - ENGINEERING AND SCIENTIFIC DATA MANAGEMENT NEEDS

Chairman: Elizabeth Cuthill
David Taylor Naval Ship Research and Development Center

1. DESIGN REPRESENTATION AND CONSISTENCY MAINTENANCE NEEDS
IN ENGINEERING DATABASES . 1

Charles M. Eastman and Steven J. Fenves

2. ENGINEERING DATA REQUIREMENTS IN IPAD 19
Stig Wahlstrcnn

3. THE MANAGEMENT OF SOFTWARE RESOURCES AND ENGINEERING INFORMATION . . . 21
Henry Loschigian

4. DATA MANAGEMENT FOR HYDRODYNAMIC CODES AT LASL 23
Lynn Maas

5. CAD/CAM DATA MANAGEMENT NEEDS, REQUIREMENTS AND OPTIONS 25
Richard S. Lopatka and Thomas G. Johnson

6. PANEL DISCUSSION - SESSION I . 41

SESSION II - APPLICATION OF DATA MANAGEMENT SYSTEMS To ENGINEERING DATA

Chairman: Richard S. Brice
The George Washington University

7. ADVANCED PROGRAM WEIGHT CONTROL SYSTEM 55
G. T. Derwa

8. A DATA MANAGEMENT SYSTEM FOR WEIGHT CONTROL AND DESIGN-TO-COST 65
Jerry C. Bryant

9. APL/w ASSOCIATIVE PROGRAMMING LANGUAGE AND VIRTUAL ASSOCIATIVE
ACCESSMANAGER........................... 85

Carol Price

JO. THE AEROSPACE VEHICLE INTERACTIVE DESIGN (AVID) DATA BASE l . 99
Alan W. Wilhite

11. PANEL DISCUSSION - SESSION II 101

V

SESSION III - APPLICATION OF DATA MANAGEMENT SYSTEMS TO SCIENTIFIC DATA

Chairman: J. C. Browne
University of Texas

12. MANAGEMENT OF ATMOSPHERIC DATA :
Roy L. Jenne and Dennis H. Joseph I

13. THE CLINFO SYSTEM FOR ANALYSIS OF CLINICAL RESEARCH DATA
Norm Palley, Gabriel Groner, Marsha Hopwood, and William Sibley

14. sms - A SCIENTIFIC DATA MANAGEMENT SYSTEM l .
William A. Massena

15. XI0 - A FORTRAN .DIRECT ACCESS DATA MANAGEMENT SYSTEM
David P. Roland

16. PANEL DISCUSSION - SESSION III

SESSION IV.- CURRENT RESEARCH AND DEVELOPMENT EFFORTS

Chairman: Stephen Sherman
University of Nevada, Las Vegas

17. RIM - A PROTOTYPE FOR A RELATIONAL INFORMATION
MANAGEMENTSYSTEM .

Dennis L. Comfort and Wayne J. Erickson

18. A DATA MANAGEMENT SYSTEM FOR ENGINEERING AND SCIENTIFIC
COMPUTING .

Linda Elliott, Hideko S. Kunii, and J. C. Browne

19. ENGINEERING DATA MANAGEMENT: EXPERIENCE AND PROJECTIONS
David K. Jefferson and Bernard M. Thomson

20. SYSTEM R: A RELATIONAL DATA MANAGEMENT SYSTEM
R. Lorie and Mario Schkolnick

21. A RUDIMENTARY CODASYL-STRUCTURED DATA BASE SYSTEM FOR
ENGINEERING APPLICATIONS .

Bob Reynolds

22. PANEL DISCUSSION - SESSION IV

129

141

143

155

163

183

197

223

243

245

247

vi

1
DESIGN REPRESENTATION AND CONSISTENCY MAINIENANCE NEEDS

IN ENGINEERING DATABASES*

Charles M. Eastman and Steven J. Fenves
Carnegie-Mellon University

SUMMARY

,The paper addresses two major issues of database support for large-scale
engineering design. The first deals with the need to support multidisciplin-
ary, hierarchical and interactive design without imposing a priori constraints
on the sequence.of design decisions. An abstract logical model of the database
capable of such support is outlined. The second issue deals with the role the
database must play in maintaining integrity and consistency among the data re-
presenting the emerging design. A tentative model implementing a number of
consistency management functions is presented.

INTRODUCTION

The purpose of this paper is to address some issues of database organiza-
tion and support for large-scale engineering design. We are primarily concerned
with engineering databases capable of supporting, in an integrated fashion, the
entire design process, from early conceptual design, through detailed design, to
manufacturing and production control, and even to operation and maintenance.
Such integrated databases support all disciplines associated with a project,
rather than just a single discipline. Integrated databases are being investi-
gated and designed in many substantive areas (refs. 1, 2, 3, 4, and 5).

The potential advantages of such databases include promoting automation
beyond that achieved in any single discipline, the associated time and cost
savings, and improved control, coordination and communication among the design
team members. These objectives may or may not be realized, in.that the organi-
zation of such an all-encompassing database can largely determine the process
of design and can structure the communication and sequence of decisions allowed.

The design processes of interest to us are those which can be characterized
as multidisciplinary, hierarchical and iterative. A fundamental requirement on
the database support is that it neither assume nor impose any A PRIORI constraint
on either the sequence of design decisions or the responsibilities of the parti-
cipants for initiating decisions.

The papers in this session will address user needs from a variety of view-
points. This paper will be concerned with the issues of structuring integrated
engineering databases so as to support two kinds of capabilities:
design decisions sequences,

(1) flexible
and (2) good communication among design profession-

als by aiding in the maintenance of integrity between decisions.

*
The work reported here was partially sponsored by the National Science Founda-

tion, grant MCS-76-19072, and Office of Naval Research, Grant No. 0014-76-C-0345.

llllllllll I

THE DESIGN DEVELOPMENT PROCESS

There is a strong interdependence between the structure of an integrated
engineering database and the design process it can support. Of interest here
is the LOGICAL MODEL of the database, specifying its functional capabilities
in an implementation independent form. Logical models are an important part
of specifying capabilities of databases in management areas (refs. 6 and 7).
They offer a CONCEPTUAL SCHEMA for users, allowing them to understand at a con-
ceptual level the organization of processes supported by the system. The logi-
cal model also becomes a specification for the implementation.

The simplest logical model of a design process is a linear, sequential
one, as sketched in figure 1. It is characterized by the fact that there is
a fixed sequence of responsibilities for design decisions. Decisions made at
one stage become fixed parameters or constraints for later stages. Multidis-
ciplinary design is accommodated by permitting the several design disciplines
to operate more or less in parallel within the predetermined stages, as illus-
trated in figure 2, and reconciling, again more or less informally, conflicts
which may arise in any one stage before proceeding to the next stage. Itera-
tion can be accommodated only by repeating a process, starting with the earliest
stage of the design process responsible for the design decision(s) that caused
the need for iteration, as illustrated in figure 3.

Providing database support for such a linear design process is concept-
ually straightforward. Each design stage, or each disciplinary activity within
a stage, is served by one or more CAD application programs, which obtain their
data from a common database and deposit their results back into the database.
Since integration of parallel decision processes at the end of each stage is
difficult, if not impossible, these are also linearized into a single fixed
sequence, each being integrated prior to the next step. Because the data gen-
erated within a stage are known and previous stages have been predefined, the
format for data at each stage can be predefined. While conceptually simple,
the implementation of such a scheme is still difficult and expensive.

It is important to emphasize that in such a linear process, results of de-
sign decisions made in earlier stages are indistinguishable from other input
data at a later stage; that is, they appear as fixed, or bound, parameter values.
The causal, relational or inferential information which produced the assignment
of parameter values is not present in the database; it exists only within the
particular application program.

Other database support needs for such a design sequence beyond the individ-
ual CAD application programs are: (1) provisions for "mapping programs" wh$ch
convert the output data from one stage to the input data of the next stage ;
(2) a common operating environment for I/O, program invocation and database
access; and (3) provisions for iteration by recycling through the application
programs and discarding previous data or segregating them by iteration "genera-
tions".

*The mapping can be procedural, involving actual reformatting, or implicit (i.e.,
converting from one subschema to another).

2

The weaknesses of the linear sequence of design development, especially
when automated as described, are well known. The linear sequence imposes an
A PRIORI order of decision making for developing a design and thus predeter-

?'
mines which decisions can constrain others. It restricts sensitivity analysis
to consideration of the effects of earlier decisions on later ones.

!. be satisfactory for some conventional,
This may

large volume products based on the same
technology, but it does not facilitate unique considerations or those varying
in importance.

An example makes this point obvious. In building-design, an appropriate
development sequence for a high-rise office building.might be the one shown
in figure 4(a), whereas an appropriate sequence for a laboratory building might
be that shown in figure 4(b). In the high-rise office, the structure is typically
given high priority, while the routing and flexibility of mechanical equipment
is likely to be more important in the laboratory. Thus the same development
sequence is not likely to be suitable for both building types. In practice,
the problem is even more serious. In building design, eac,h firm has its own
preferred,development sequences and these may vary with building type or parti-
cular circumstances. Thus no one sequence of development would be acceptable
to all design organizations or even to one organization for all design tasks.
In other design fields involving variable conditions and contexts, similar con-
ditions exist. Different priorities will exist in different projects and these
require different development sequences.

A related shortcoming of the linear design sequence is the low utility of
the resulting database for use within a dynamic context. During design, if a
new technology or other opportunity arises, a linearly ordered development se-
quence usually requires iteration through major portions of the sequence in
order,to incorporate the required changes. The linear sequence also predeter-
mines what application programs can be used during design development. It is
very difficult to incorporate a special application program appropriate for a
particular situation or in response to a unique function. Integration of new
forms of analysis or alteration of a design beyond the capabilities of the
existing system imposes such a high cost that alternatives requiring these
probably will be abandoned. Thus, integrated design systems slavishly incor-
porating a fixed design sequence pose a real danger of stultifying and
stereotyping engineering design.

COMPONENTS OF THE DESIGN PROCESS

Before proposing an alternative logical model capable of supporting more
flexible general design development processes, it is instructive to look in
more detail at the objects dealt with in design and at the basic design funct-
ions.

A general organization for representing the objects dealt with in design
is as the description of entities, their attributes, and their composition.
ENTITIES are characterized by enumeration of their attributes. Here, an ATTRI-
BUTE consists of a name that stands for some measurement, a type defining the
method for encoding its value and the value(s) resulting from the measurement.
Attributes may be defined by the scalar measurements, such as cost, axial load
or other performance measures; nominal text strings, such as the object name,

IllI IIIllllllll

its manufacturer or function; or more complex coded information, such as shape,
location and color. A challenging aspect of developing engineering databases
for multidisciplinary design is that the various disciplines are concerned
with different attributes of the same entities (e.g., a pump, besides its mech-
anical function, is a load to the structural engineer and a volume to the space
planner). Of course, no set of attributes completely defines an entity. In
design, we only consider those of significance in the context of the problem
at hand.

The task of design can be viewed as defining entities, assigning values to
their attributes and composing them. The entities of a design are related by
their COMPOSITION. The definition of a SYSTEM is that its composition is such
that new attributes or functions emerge (ref. 8). Different compositions result
in different emerging attributes. Composition may be defined in at least two
ways, spatially or functionally.

SPATIAL COMPOSITION involves relating one or more objects relative to others
by their spatial location. Many performance characteristics are a function of
spatial composition, such as in architecture, aerodynamics or structural load-
ing. Location information can involve chains of relative locations which are
easily combined using transformations to derive the relative location of any
pair in the chain (ref. 9).

FUNCTIONAL COMPOSITION involves relating nonspatial attributes of objects
so as to fulfill some functional purpose. Examples include structural, thermo-
dynamic, electrical or chemical functions that define relations among the attri-
butes of entities. A functional relation identifies in nominal form an inter-
dependency among entities and their attributes.

Design is normally thought to involve two major operations: analysis and
synthesis. These operations are easily characterized within the framework of
entities, attributes and their composition.

The best understood design operation is ANALYSIS. It consists of deriving
new attributes for an entity, either by applying a model to other attributes of
the same entity, or to attributes of others that comprise the entity. Conven-
tionally, analysis is used to predict one of the performance measures for some
part of the design. Examples include modeling the response of a structure from
the behavior of its members or computing the cost of a system from the individ-
ual costs of its components. Analysis, then, is the generation of information
from detailed descriptions of entities to "higher level," more aggregate des-
criptions.

The second form of operation traditionally associated with design is
SYNTHESIS. Synthesis might be defined as generating new configurations so as
to satisfy earlier defined functional requirements. Examples include laying
out spaces in a building or defining a structural or piping system. Synthesis
can be interpreted as defining constituent entities that satisfy one or more
of the attributes of a higher level entity. Whereas analysis generates more
general information, synthesis generates more detailed information. (These
are the opposite actions from what many people naively assume.) Synthesis is
often a nondeterministic process and involves a "search" for an acceptable

4

,:

solution.

i

However, some synthesis processes need not involve search, but are
Abased on deterministic procedures incorporating "good practice" knowledge (i.e.,
!imethods for detailing).
?"
r?

If the definitions of analysis and synthesis posed above are compared with
' the entities-attributes-composition conceptualization, it is found that analysis
' and synthesis are not sufficient for design. A third operation is required. *

It arises from two sources; First, in iterative design processes, assumed values
must be assigned to certain attributes to initiate an synthesis-analysis cycle
(e.g., to analyze the structural response and then size the structural components,
initial component sizes must be assumed). Second, sequences of analysis and
synthesis operations provide only a partial set of entity attributes. This is
particularly true when design tasks of different disciplines are interdependent,
yet the disciplines must work in parallel. In building design, for example,
the structure and activity areas are functionally interdependent, yet typically
the structural and architectural staffs work in parallel. Designers generally
circumvent this problem of "missing" attributes. Previous projects of similar
design, design aids, simple models, etc., allow ESTIMATION OF NORMATIVE VALUES
for certain attributes. Examples for the above include column sizes for pre-
liminary space planning and estimated loads for the structural engineer. After
actions are taken on these estimated values, more exact values can be generated
on a later iteration. This technique is also commonly applied in resolving
simultaneous relations by making informed estimates of the values determining
one aspect, using these estimates for solving the other, and then iterating
until satisfactory convergence is achieved. Notice that without the ability
to estimate entity attributes from experience, synthesis would be very diffi-
cult, almost impossible, and analyses,could only be undertaken for a complete
design.

A LOGICAL MODEL FOR INTEGRATED ENGINEERING DATABASES

The previous discussion of salient aspects of the design process provides
a basis for defining a logical model for integrated design databases which
responds to the need for flexible decision sequences.

It is obvious that as a design project evolves, its description grows.
Two forms of growth can be identified. First, entity descriptions are enriched
with additional attributes. Examples are the addition of performance data as
they become known, or manufacturer or delivery data as these are determined.
The second way in which a design description grows is by the decomposition of
aggregated entities into their constituents. Thus a building might initially
be defined in terms of building shell and spaces. The shell later will be de-
composed into structural frame, slabs, partitions, exterior walls and mechani-
cal equipment. Still later, the structural frame will be decomposed into beams,
Columns, joints, etc. In general, the building is decomposed into subsystems
and each of the subsystems is decomposed into its component parts. The result
is a hierarchy. The top node in the hierarchy is the initial problem defini-
tion (e.g., a general definition of a building, its site and desired performance
or a ship and its functions). The bottom level entities are the multitude of
parts to be used to construct the project.

5

Definition of the hierarchy may sequentially proceed by adding detail in
a top-down manner or aggregating objects in a bottom-up sequence. Usually, it
is a mixture of both. The levels of detail used to represent entities corres-
pond roughly to the stages of the design development sequence.

A hierarchy of entity descriptions is an integral part of the scientific
. view of the universe (ref. 8). It has also received mch attention in differ-

ent areas of design (refs. 10 and ll), and software engineering (ref. 12) and
database organization (ref. 13). The various nodes of the hierarchy, except
at the bottom level, do not describe literal objects but rather conceptual
classes of entities which are called ABSTRACT OBJECTS. Recently, the name
associated with this hierarchy is ABSTRACTION HIERARCHY (ref. 14).

It is for all practical purposes impossible to predefine the final hier-
archy for a large design project at its outset unless it is known to be only
a slight modification of a known conventional design. Since each major decision
results in different detail subhierarchies, a predefined hierarchy would require
that all major decisions be made in advance (e.g., the type of structural frame
and exterior materials for a building). It is an important requirement, then,
that the hierarchy be definable dynamically as design proceeds.

In the same vein, different design situations sometimes require unique
analyses that,cannot be anticipated (e.g., the fluid flow analysis of a high
pressure heat recovery system for a building). Thus, a diverse set of analyses
or applications should be applicable to the data within the hierarchy.

The structure of a design abstraction hierarchy thus responds to several
criteria: (1) it defines the logical structure by which global goals or criteria
are allocated to the "parts" of a design; (2) it defines the levels of detail
used to describe alternatives and make choices between them; and (3) it defines
a structure by which most of the functional relationships to be fulfilled by a
design are to interact with each other.

It is generally agreed that the hierarchy of abstract objects defining a
design is roughly set-theoretic. That is, after an initial problem is defined,
for each entity Xi,XiEXnfOrSOme n. In this discussion, the term "parent"
will be used to refer to the entity Xn , and the term "children" will be used
to refer to the members Xi . This condition is certainly an inclusive one and,
without restrictions, imposes few limitations on the overall structure of design.
Most often, the restriction imposed is the traditional tree structure:

if Xit$qS then XilE Xm for all m, n # m

That is, any entity may have at most one parent. This condition is too restrict-
ive, however. It must be broadened in at least two ways:

(1) Multifunction entities require that the entity be a member of more
than one set. Consider the design of an automobile. Early design may consider
two systems, each with a distinct function and required performance (e.g., the
power and structural systems). Normally, an engine is considered part of the
power system and would be one of the children of that parent. However, engine

6

1; blocks can also be used as part of the structural system, particularly in rac-

i
.i ing carse

Thus they should belong to the second hierarchy also. In general,
,, any entity having more than one function is likely to belong to multiple sets
:/ (e.g., have more than one parent).
i \

(2) Functional and spatial composition each require their own structure.
Consider an electrical distribution box on the 4th floor of an apartment build-
ing, possibly in someone's apartment. Is the box a part of the apartment entity,
the electrical system entity, or. the 4th floor entity? Both the 4th floor
entity and the apartment entity are defined.by location: the apartment may be
defined as a child of the 4th floor. On the other hand, the electrical system
is defined by function. It would be desirable not to have to make an either-
or choice, but allow accesses to the electrical box to be made by both location
and function. With multiple functions, this means one entity may be the child
of many higher level entities.

It is reasonable to conclude that entities are children of other entities
AS DETERMINED BY THEIR ATTRIBUTES. Attributes are defined to characterize the
performance of entities functionally or spatially. Thus each function has its
own (sub)hierarchical organization. Formally, this is denoted

{w,, w2 ,... wp...wr’J = xi, wpc xn

where W P
is an attribute describing entity Xi .

These two examples suggest that a richer set of relations is needed in de-
sign than those provided by the conventional tree-structured hierarchy. By
allowing different attributes of an entity to identify set relations, an entity
may be a parent of multiple sets; similarly, it is necessary that an entity be
a member of multiple sets. The hierarchical organization is an overlapping set
of trees, resulting in a directed acyclic graph.

An implication is that database systems that rely on set-theoretic rela-
tions will not in general be suitable for design applications. Rather network
capabilities will be required (ref. 15).

To summarize the discussion so far, a conceptual database for integrated
design should have the following features:

(1) Ability to represent abstraction hierarchies of considerable complex-
ity. Of particular importance is the ability to group and access entities by
multiple relations; the number of such relations to be accommodated must be at
least equal to the number of compositions (spatial plus the different functional
compositions) explicitly taken into account in the design process.

(2) Provision for dynamic expansion. The expansion must accommodate the
extension of attributes as they occur. (A single, fixed entity record format
with all possible attribute fields defined initially would be too cumbersome,
if at all possible.) The expansion must also accommodate the dynamic decomposi-
tion of aggregate entities (i.e., the attribute of having children must also
be dynamic, both as to the number and kind of lower-level entities generated).

7

(3) Provisions for "mapping" or interfacing with application programs,
both for extraction of data from the database and for the return of applica-
tion program results to the database. This particular issue has been addressed
by many investigators (refs. 16 and 17).

(4) Provisions for utilizing normative information to fill in data not
derived analytically so as to support iterative, simultaneous, convergent
decision sequences.

(5) Provisions for segregating information related to different design
stages and iterations within stages in a much more general way than that need-
ed for the linear sequence. Of particular importance is the need to identify
and segregate normative information inserted into the database by a previous
stage or a parallel activity from information generated as a result of evaluat-
ing functional relationships based on actual attribute values.

These requirements are different from those needed in management areas
and are not all incorporated in any commercially available database system
to our knowledge.

INTEGRITY AND CONSISTENCY MAINTENANCE

Consider this hypothetical example: a large collection of data describes
an engineering project with means to run many analyses, but where all changes
must be made individually without recourse to predefined manipulation pro-
grams. The user would have to remember all the variables to be updated with
any substantive change (including directories and bookkeeping indices) and modi-
fy each individually. Of course, such a database would be almost worthless for
design. ,

Because of the complexity of relations existing in any large-scale engin-
eering project, designers rely on a variety of representations to help them
keep track of these relations. Layout drawings, piping and structural schema-
tics allow tracing the implications of one change on other entities. Similar
facilities are mandatory in an engineering database if it is to support the
task of design.

In computer science, INTEGRITY is defined as the maintenance of function-
ally related information so that the relations are satisfied. CONSISTENCY is
a special case of integrity and involves maintaining the equivalence of redun-
dant data (ref. 18). Both have been recognized as issues in the management of
databases and some research has been undertaken to address these issues (ref. 19).
The number of functional and spatial relations in design, however, makes inte-
grity and consistency maintenance a crucial problem.

Integrity and consistency issues involve a large spectrum of considerations.
At one level are simple considerations, such as guaranteeing that redundant
information is consistent,(e.g., that the same beam or pipe represented in dif-
ferent drawings and engineering calculations is described consistently). At a
different level is the concern that fixed solid objects do not overlap in space.
Also, there is the integrity problem of deriving correct counts of parts and
quantities of materials. At a more complex level of integrity management are

8

1 I
5
.:/the dimensional relations among connected items (e.g., the requirement that fit-
I 1 tings, pipes, valves and ducts match with the equipment they connect). At a
$higher and much broader level are integrity relations between performance mea-
IL sures of a system or subsystems and those of the components selected to support
i them. At the highest level of consistency management is the checking of overall

project objectives, such as cost and global functional performance, against the
attributes of the proposed design. In each case, the technical form of the inte-
grity relation is an equality or inequality exIjression over a set of entity
attributes describing part of the design. In some cases, the scope of the ex-
pression is limited to attributes describing a single entity while in others,
major portions of the database are involved.

Integrity and consistency, then, are ubiquitous tasks in design that in-
clude both the most trivial local concerns as well as the mostcrucial global
objectives. With the structuring of all design information into an integrated
database processing environment, it becomes necessary that the database manage-
ment system automatically provide significant aid in integrity and consistency
management.

In terms of the conceptual datastructure presented in the previous section,
it can be seen that integrity management is needed for application in all of the
following contexts:

(1) Within an abstract object, guaranteeing that all attributes describing
an entity are consistent, spatially, functionally and in terms of performance.

(2) In the maintenance of logical relations in the spatial composition
(e.g., avoiding spatial conflicts) and insuring that the shape and location attri-
butes of entity pairs are consistent with their connectivity specification.

(3) In the maintenance of functional relations for any specific function.
Here, integrity maintenance involves two parts. The first is checking the out-
put of any application program to see that its results are consistent with the
program's input as far as the functional relations explicitly "built into" the
application program (e.g., a statics check on a structural analysis). Second,
analysis results must be checked against the nominal functional requirements
or constraints imposed on the design (e.g., that the structural cost is within
the budget).

(4) At the multifunctional level, to insure that entities or attributes
representing different functional requirements and assigned by different dis-
ciplines are consistent among themselves.

(5) At the iteration level, to insure that the iteration results are con-
sistent among themselves and do not explicitly depend on externally supplied
normative values inserted in the database to initiate the iteration.

(6) At the design stage level, to insure that information generated during
later design stages is compatible with the requirements and constraints imposed
at earlier stages.

In all of these situations, an engineering database should be able to

9

evaluate one or more of the integrity relations and report to the user if they
are violated. Possibly, in addition, the database should take an action that
will rectify the integrity issue. This means that, in some conditions, addi-
tional checking processes must be invoked automatically, most reasonably when
certain variables are read from the database or written to it. The point is
important because evaluation of one integrity relation may require access of
other data also under question, requiring a chain of processes. It should be
noted that the CODASYL DBTG recommendations which have become a de facto
standard for databases include such an automatically invoked process, the
attribute of type FUNCTION that can be invoked when written, called Function
of type ACTUAL, or when read, called Function of type VIRTUAL (ref. 6). The
effect of embedding such processes into the "monitor level" actions of a data-
base is to move certain functional relations that are part of the engineering
problem from analysis programs or the designer's head to the database.

Methods have been presented whereby subroutines may be invoked by these
mechanisms to check a fixed range of integrity relations (refs. 20 and 21).
These papers show, for example, how these processes, imbedded in a database,
can identify spatial conflicts, maintain cost summaries and check the nominal
values used as input to analyses against later detailed values. It is still an
open research question whether consistency management, especially at the higher
levels, should automatically invoke modification of attribute values to make
them consistent, or whether it should only generate automatic notifications
that new attribute values violate established consistency requirements.

Integrity 'checking processes may interact in many unanticipated ways.
Spatial conflicts and the results of analyses may invalidate sets of data, not
just a simple attribute. The invalidation of one value may result in the in-
validation of many others derived from it. A possible mechanism for effecting
automatic integrity management is presented below.

A MODEL STRUCTURE BASED ON VALIDITY FLAGS

Attributes can be modified in several contexts: in synthesis, detailed
entities and their attributes are defined, based on some initially specified
aggregate description; in analysis, higher level attributes are determined from
the attributes of more detailed ones. Synthesis typically relies on normative
(and thus nonexact) values for its processes, whereas analysis ultimately re-
quires data known to be valid in the context being dealt with (e.g., the data
must consist of attributes of purchased items or aggregate values derived from
analytical models).

The consistency between data derived from analyses at different levels of
detail can be guaranteed in a variety of ways:
(1) as more detailed analyses are run (after more aggregate ones, in a top-down
design sequence), the values derived can be matched with the normative data used
at the higher level. The matching will either show that the initial assumptions
were valid, verifying the earlier analysis, or indicate the assumptions were in
error, requiring reanalyzing the higher level conditions.*

*
In practice, many cases are not clear cut and judgment regarding verification

or nonverification is required.

10

(2) a series of analyses can be undertaken after top-down design has been
competed or in parallel with a bottom-up design process. In these cases, high-
er level analyses are undertaken after the more detailed information, which is
their inputs, have been analytically derived.

In either case, especially because of the interdependence between functions,
there is the likelihood of using data for analyses that are not valid, possibly
because it has been violated by recent actions. Thus a method is needed for
managing the status of data within the hierarchy.

Analyses that are invoked by the user or integrity operations in an inte-
grated database can be considered as complex expressions. These expressions
can be viewed as consisting of three sets of variables (ref. 22): (1) generic
definitions of the engineering system and engineering constraints; (2) context-
ual definitions of the specific subsystem to which the analysis is being applied;
and (3) specific output results.

The first set is defined by the type of analysis or integrity relation and
defines particular attributes to be used; this set is constant over all appli-
cations. The second set defines the entities to which the process is applied
in particular instances. Together, the three sets resolve to the specific data
needed to execute an analysis or integrity check. As design proceeds, each
analysis or integrity relation has an associated definition of type (1). For
each application within an engineering project, type (2) and (3) information
is stored defining relations over specific inputs and results.

Associated with each attribute value in the database is a VALIDITY FI.,AG
that may take several values. Among these values are 'VALID,' 'VOID' and
'NORMATIVE'. Evaluation of any derived attribute proceeds recursively from
its location downward, proceeding along the network of ingredient attributes
specified by type data sets until valid ingredients are encountered (or a sig-
nal is generated that inputs are missing). Each time an attribute is assigned
a value consistent with the values of its ingredients (i.e., a type (3) rela-
tion is satisfied), its flag is set to 'VALID.' Modification of any attribute
is accompanied by the erasing (i.e., setting to 'VOID') of all of its dependents.
Thus, at any stage, information is valid if it is consistent with its ingred-
ients; reanalysis requires the traversal of only those variables which have
been rendered void as a result of changing one or more of their dependents.
Thus a change high in the hierarchy need not invalidate all values below it
if the effects of the change are absorbed by only one of its constituents.
Such a change will propogate downward recursively, following branches selected
by designers.

When nominal values are encountered in the constituents of an analysis,
they are treated the same as 'VOID' unless the analyses required to verify
them encounter missing data, in which case they are accepted and the current
flag is maintained. If verified, the flag is changed to 'VALID'.

In marking values void, different responses occur according to the type
of attribute it is within an entity. Some attributes are bound to the entity
(e.g., section modulus of a beam or thermal conductance of some material). Others
are not bound and can be varied, such as the length of a steel section or thick-

11

ness of a (sheet) material. The assignment of a 'VOID' to an attribute bound
to an entity voids all the other bound values also. In this way, a change made
in one functional aspect of the design easily results in reanalyses and changes
in other functional areas.

This approach has been successfully applied to the processing of constraints
arising out of building codes and design specifications (ref. 23). The mechan-
ism can be extended to iterative design where each attribute exists at two

"I levels, with corresponding flags of 'CURRENT' and 'PREVIOUS '.. This mechanism
can also segregate derived data from assumed 'NOMINAL' data (ref. 24). Some
conceptual work has been done to extend the mechanism by mapping it to the
actual data structure, including the explicit representation of type (1) and type
(2) hierarchy (e.g., a pipe "run" satisfies some constraint only if all fittings
and valves making up the run satisfy their respective constraints (ref. 25)).

The concept of validity flags can be further extended by adding a PERMANENCE
LEVEL INDEX to distinguish between levels of definition of data. Permanence
here pertains to the confidence level that data item will not be changed. For
instance, successive preliminary schemes for a building may be stored under
levels 1, 2 and 3, with the last one released for further detailed design. Data
being used by a number of different groups of the design team, such as the arch-
itects, structural engineers, and mechanical engineers, might be given a per-
manence level 4, data used in a more transient fashion by one of these discip-
lines designated level 5. A trial structural design might be conducted at
level 6, and the gradient calculations used to determine whether 'an improvement
in the design is possible might be conducted at level 7. When the trial design
is determined to have converged, its data might be relabeled to level 5, and
when the structural design has been checked for consistency with the current
work of the architects and mechanical engineers, it could be relabeled to level
4. The scheme can be readily extended so that some level n represents
the contract documents, level m(&n) the as-built conditions at completion of
construction, and level k(tim) the modifications, rehabilitation, etc. in opera-
tion (ref.26).

As another extension, an APPROXIMATE COST FUNCTION of performing a change
may be stored as an attribute at each permanence level. For instance, prelim-
inary schemes for a building may have stored with them an initial positive
value. Each analysis or integrity relation has associated with its type defini-
tion an index of its cost of application. For example, a spatial conflict might
have a cost of 0.5, a single zone thermal analysis (using average day weather
input) may have a cost of 2.0 and a five zone analysis run over a full year
might have a cost of 1600. As decisions are made and data items flagged 'VALID,'
they can in addition have added to their costs the cost of the process(es)
that rely on them. These 'costs' propagate upward from derived values to their
dependents SO that the cost at each permanence level corresponds to the rela-
tive amount of processing that would be involved to modify any data item.
When alternative designs are generated for some subsystem, the data items for
each alternative initially will have the same 'cost'. Yet the existence of
alternatives reduces the 'cost' of each of the options and the cost of switch-
ing among them. Thus the 'cost' should be divided by the number of alternatives
existing at some level of detail.
'cost'

If one alternative is further detailed, the
of detailing is added, as in the normal situation.

12

The proposed flag mechanism allows multiple design members to work in
;d parallel on common data; the flags provide an important level of communication
i between them. It is not realistic to assume that all data can be maintained

in 'VALID' form throughout the design, especially when some updates may take
significant amounts of time. Changes made by one designer are flagged so that
all other designers are made aware of the change. This is an important reason
for not partitioning engineering databases into discrete 'subschemas'; with
partitioned data, integrity cannot be managed by the database system.

Three observations can be made about this scheme: 1

(1) It is to be noted that the validity flag mechanism has no way of
evaluating the sensitivity of a derived value to the change in one of its in-
gredients; it treats all changes uniformly by invalidating all of its dependents.
Its major advantage is that it minimizes the recomputation resulting from.any
change.

(2) As indicated earlier, the data structure grows as design progresses.
Thus, information about the same objects at various permanence levels may have
different representations, both in amount (number and kind of attributes) and
in structure (structure and type of children).

(3) Administrative and project management control can be highly integrated
with database and consistency management (ref. 26). Many individual design
and detailing processes can be viewed as transformations of information about
an object from permanence level i to level i + 1; interaction as cyclic
operations between the 'CURRENT' and 'PREVIOUS' data; and consistency checking
and coordination as taking several partial representations at permanence level
i and consolidating them into a level i - 1. Authorizations, project bench-
marks, time and resources, and other administrative information can be readily
'associated with the permanence levels as with the design activities operating
on them.

CONCLUSIONS

It is clear that engineering design of any magnitude requires substantial
database support in order to supply the representations now provided by draw-
ings, caiculations, and the coordination and consistency management functions
now largely done by manual and visual methods. However, it is crucially import-
ant that the database organization impose no A PRIORI constraints on the design
development sequence. A fixed sequence restricts the constraints and objectives
possible at each stage. The database support should foster and encourage broad-
based, even divergent, design in response to emergent needs and changing tech-
nologies, and not to codify, stultify and stereotype design.

Database support must extend considerably beyond providing passive I/O
capabilities to a collection of application programs. In particular, it must
provide substantial assistance in integrity maintenance among the object des-
criptions dealt with at various design stages by different designers and mana-
gers. Among the requirements for achieving integrity management is the embed-
ding of semantic information about the data stored. A family of such schemes
have been presented here. This kind of support is a first, if tenuous, step in
evolving databases with "intelligence" about the task domain they support.

13

REFERENCES

1. Miller, R. E. et al.: "Feasibility Study of an integrated program for aero-
space vehicle design (IPAD)" Boeing Commercial Airplane Company, Seattle
1973.

2. Wisnowsky, D.: "ICAM: the Air Force's integrated computer aided manufacturing
program”, Astronautics & Aeronautics, February 1977, pp. 52-59.

3. Eastman, C. and Henrion, M.: "Language for a Design Information System",
Institute of Physical Planning Research Report No. 58, Carnegie-Mellon
University, February 1977.

4. Tsubaki, ,M.: "Database Impact on Process, Plant and Project Engineering"
AIChE 83rd Meeting, Houston Texas, March 1977.

5. Bandurski, A. E. and Jefferson, D.: "Enhancements to the DBTG model for
computer-aided ship design", Proceedings of the Workshop on Databases for
Interactive Design, University of Waterloo, Ontario, Sept. 15-16, 1975.

6. CODASYL, Database Task Group, April 1971 Report, ACM, New York, 1971.

7. ANSI, 1975,: Interim Report ANSI/X3/SPARC/Study Group: Database Management
Systems, ACM SIGMOD FDT 7,2,1975.

8. Jacob, F.: "Evolution and tinkering" Science, 10 June, 1977, pp. 1161-1167.

, 9. Newman, W. and Sproull, R.: Principles of Interactive Computer Graphics,
McGraw-Hill, N. Y. 1973.

10. Simon, H. A.: The Sciences of the Artificial, MIT Press, Cambridge, 1969.

11. Alexander, C.: Notes on the Synthesis of Form, Harvard University Press,
1964.

12. Wirth, N.: "Program development by step-wise refinement", Conununic. ACM
14:4 1971, pp. 221-227.

13. Taylor, R. W. and Frank, R.: "CODASYL database management systems" ACM
Comp. Surveys; 8:l March, 1976, pp. 67-104.

14. Smith, J. M. and Smith, D. C.: "Database Abstraction: aggregation"
Communic. ACM, 20:6 June, 1977.

15. Taylor, R. W. and Frank, R.: Op cit.

16. Lopez; L. A.: "POLO: Problem-Oriented Language Organizer", Computers and
Structures, Vol. 2, No. 4, 1972, pp. 555-572.

17. Niida, K., Yagi, H. H. and Umeda, T.: "An application of data base manage-
ment system (DBMS) to process design" Computer and Chemical Engineering,
1, 1977, pp. 33-40.

14

18. Date, C. J.: Introduction to Database Systems, Addison-Wesley, Reading Mass,
Js 1975.
:).
i' 19. Codd, E. F.: "A relational model of data for large shared data banks",

Communications of the ACM, 13:6, 1970, pp. 377-387.

20. Eastman, C.: "Representation of design problems and maintenance of their
structure", IFIP Working Conference on Applications of Artificial Intelli-
gence to CAD, Grenoble, France, 1978.

21. Hammer, M. and McLeod, D.: "Semantic integrity in a relational database
system" Proc. Int. Conf. on Very Large Databases 1975 ACM, New York.

22. Baer, A. and Eastman, C.: "The consistency of integrated databases for
computer aided design", Proceedings of the Workshop on Computer Repre-
sentation of Physical Systems, Carnegie-Mellon University, August, 1976.

23. Gael, S. K., and Fenves, S. J.: "Computer-Aided Processing of Design Speci-
fications," Journal of the Structural Division, Vol. 97, No. ST1 (New
York: American Society of Civil Engineers, 1971), pp. 463-479.

24. Tarmn, M. J. and Fenves, S. J.: "Representation of a Computer-Aided Iterative
Design Process", Dept. of Civil Engineering, Report R-77-5, Carnegie-
Mellon University, Pittsburgh, PA, 1977.

25. Fenves, S. J. and Wright, R. N.: "The Representation and Use of Design
Specifications", in W. J. Hall (editor), Structural and Geotechnical
Mechanics, Prentice-Hall, 1977, pp. 278-304.

26. Yang, J. M. and Fenves, S.: "Representation of information in the design-
construction process", Dept. of Civil Engineering, Report R74-1, Carnegie-
Mellon University, Pittsburgh, PA. 1974.

15

(a) General linear design sequence.

(b) Linear sequence in building design.

Figure l.- Linear design sequence.

Figure 2.- Parallel operations in a linear design sequence.

16

I
---------7

I

-------me

I
I

I

I

pi) ~~I~ DETAILED) I
DESIU

.
b

I
I

L-_------------------ I

------ i teratim paths

Figure 3.- Iterative operations in a linear design sequence.

BESIfw

STltUCTuRFL LnYauTb
I

GRID L
SERVICE CORE

’ CIRCUBTIOW

FllCAlE I

(a) Development sequence for a high-rise office.

(b) Development sequence for a laboratory.

Figure 4.- Alternate development sequences.

17

.

-

2
aJGINEERING DATA REQUIREMENTS IN IPAD

Stig Wahlstran
Boeing Cunmercial Airplane Canpany

Paper not submitted for publication

19

I .--

3
THE MANAGEMENT OF SOFTWARJZ RESOURCES AND ENGINEERING INFORMATION

Henry Loschigian
Grumman Aerospace Corporation

Paper not submitted for publication

21

DATA MANAGEMENT FOR HYDRODYNAMIC CODES AT LASL

Lynn Maas
Los Alamos Scientific Laboratory

Paper not submitted for publication

4

23

5
CAD/CAM DATA MANAGEMENT NEEDS, REQUIREMENTS AND OPTIONS

Richard S. Lopatka and Thomas G. Johnson
Pratt & Whitney Aircraft Group

ABSTRACT

This paper reviews the requirements for a data management system in
support of technical or scientific applications and proposes possible courses
of action. The capabilities that developed as part of the CAD/CAM effort at
Pratt and Whitney Aircraft are described (reference 1). The benefits and
limitations of developing data management software for each CAD/CAM system are
discussed as background for presenting scientific data management needs. The
specific requirements have evolved while working towards higher level
integration impacting all phases of P&WA's current design process and through
examination of commercially marketed systems and related data base research.
Arguments are proposed for varied approaches in implementing data base
systems ranging from no action necessary to immediate procurement of an
existing Data Base Management System.

INTRODUCTION

At P&WA in 1969, the development of computer support for the design and
manufacturing process took a dramatic turn with the introduction of computer
integrated design systems utilizing interactive graphics, timesharing anri
data bases permitting module to module data exchange within each system
(reference 2). The above mentioned key techniques in the first system
(figure l), _ TADSYS Turbine Airfoil Design System, have been repeated in the
implementation of many other systems supporting the overall design of ad-danced
gas turbine engines. All these computer integrated design systems can be
considered "scientific," "analytic," or "technical" in nature. Nearly all code
is written in FORTRAN. Data is primarily floating point relating to geometric,
thermal, structural or aerodynamic calculations. In general, available soft-
ware for timesharing and graphics is used. Software for data management is
not available and therefore must be created. The result is that each design
system has its own highly tailored data management software.

P&WA's CAD/CAM DATA MANAGEMENT TODAY

Computer system integration through a centralized data base has been a
bottom-up phenomenon beginning with module to module ties within functional
disciplines. For example, thermal and structural codes share the same data
for part model and external loading. Related codes are brought into the
system and a family of programs is organized together to perform a particular

25

function. Computer codes, in many cases, arise from R&D efforts to prove
analyses, correlate test results and improve, math models and simulations.
Data management for future integration into the engine design process is of
little concern.

The foundation at P&WA used to build most data management software is
FORTRAN direct-access support. Programmer/analysts are given responsibility
to develop software to meet the application. This leads to many different
styles in implementation depending on the background and ability of the
programmer. The data management software is tailor-made for the specific
application. The effectiveness of the immediate single application is
optimized. Code is efficient, storage is fast and compact for the near term.
In-house software support enables management to control the development and
maintenance tasks.

Tailored data management software is not without its limitations. The
data files are designed to efficiently serve the system being developed:
. i.e., data-to-program dependence is strong. The data file record lengths are
designed with the track length of the direct access device in mind: i.e.,
device dependence is strong. Facilities for backup, recovery, security and
multi-user are usually weak if they exist: i.e., the system is functionally
limited. A Data Dictionary to control data definitions and relationships is
considered a 'luxury that cannot be afforded.

Building data management software for each system is an expensive
approach. An examination reveals that lo-20% of each system's development
time is spent on developing the data management software. Once built, each
system's data management software needs its own maintenance, documentation
and enhancement support. There is even a utilization expense. Each
programmer who'is to interface a computer program into the system must learn
how to use that system's data management software to retrieve and/or store
data in the database. Manpower support increases as the inventory of CAD/CAM
systems increase.

As more CAD/CAM systems become available, the controlled accessibility
of one system's data by another system becomes desirable. The definition of
a part, for example, should be available to all those systems requiring it.
Integrating systems to achieve data accessibility, however, is unfortunately
frustrated by the difficulties associated with incompatible data management
software and libraries.

To bypass the data accessibility problem, a file management system
called the Central Data Library was introduced at P&WA in 1974. Central
(figure 2) ac?epts data files submitted by separate design systems and
operates between these design systems, providing a central vehicle for
company sharing of technical data. Some of the data files are referenced on
engineering drawings and are used to manufacture parts. The structure of the
data file is negotiated and pre-formatted prior to data management processing.
The structure is thus rigid, thereby providing the data integrity required.
Each file contains header records through which Central provides all its

26

iy services (figure 3).
&.I The header record information is supplied manually when
:, the data is sent to Central. Header records are used to establish directories

and to cross reference related data files. Search and retrievals are based on
the directories.

Central manages its on-line storage area and moves older files to.an off-
line archival storage system when more space is needed.

Even the successful Central file management system, however, has its
limitations. As more systems "talk" to each other, more file structures
will be defined. Any change to a file structure will impact all programs
either sending or receiving that file; again, data-to-program dependence is
strong. Header record information is frequently incomplete either because of
omission or unavailability when the file was sent. Missing header information
reduces the‘effectiveness of Central's search facility and its ability to
cross-reference data files. Management utilities are limited.

In this environment of successes and growth in the evolution of
integrated design systems, two factors stand out and deserve consideration.
They are:

(1) The cost of software development has become a significant deterrent to
cost effective computerization. Data management in scientific computing
is a major contributor to this software expense (reference 3).

(2) A changing view of data (including geometric data and related
information) is developing which leads to systems in which data is
managed (controlled) and provided at department, divisional and even
corporate levels. Data is treated as belonging to the whole rather
than belonging to small functional subsections of the design process
(reference 4).

It is in this light that the question "Can CAD/CAM use a DBMS?" is posed.

TECHNICAL REQUIREMENTS

While working towards an expansion of systems integration for P&WA's
design process, we have examined:

. the off-the-shelf commercial data base management packages currently
available (reference 5).

. current data base research including relational developments
(reference 6).

. P&WA and United Technologies packages designed for in-house
applications.

27

From this we have developed a list of the features a DBMS would have to
contain in order to satisfy our current and future needs. Some of the
features can be found in available commercial packages; however, no one
package has all of them. It may first appear that these features are the same
as those required for business applications and, in fact, substantial
similarities exist. However, because of host language support, data
structures and data type support, terminology and even marketing strategy,
significant shortcomings can be found in today's DBMS offerings. Figure 4,
comparing attributes of COBOL vs. FORTRAN based environments, helps illustrate
the differences encountered. Eight general features of a DBMS for scientific
applications are described below.

Host Language Interface

An absolutely essential requirement for effective use of a DBMS in our
environment is a host language interface to FORTRAN. Although much has been
said about the limitations of FORTRAN, the development of key scientific
software is still based upon this language. This is not about to change
within P&WA in the near future.

A FORTRAN Data Manipulation Language (DML) must be provided to enable
FORTRAN programmers to interact with the data base within their source code.
A call-level interface would be the minimum acceptable capability. The
preferable method would be a command-level access as proposed in the CODASYL
FORTRAN interface (reference 7). With this, a preprocessor step would cross-
check and integrate with a Data Dictionary and then convert the commands to
calls.

A host language interface is needed for PL/l and COBOL as well. The
advantage of PL/l for system-oriented and string manipulation problems is
obvious. Applications evolving from separate paths in scientific and
commercial (business) applications are meeting at the data base level. For
example, design part geometry description data in scientific applications now
require a data relationship with the master part number (bill of materials)
data base to establish engineering release status. The part description can
then be stored as "final" design data.

Table I includes a list of calls and a description of the data
manipulation functions that they support. Their enclosure is intended not as
a proposed set of calls, but more as a guide to the type of calls and
functions needed in the FORTRAN environment.

Interactive End User Language

The DBMS should provide an end user language which accesses the data
base for interrogation, updating, data selection, sorting,and output
formatting (reports and plots). It must be simple enough to use without re-
quired programming skills, yet powerful enough to perform many of the basic
user requestson-line. It should have Boolean search logic, use the same data

28

$ 1 'definition and handle the same data formats as FORTRAN programs. We see i
i

considerable potential for applications combining the use of the host
i, language interface and the end user query capability. Less host language
? programming will be necessary because the end user query language will I' satisfy some of the user's requirements.

Data Independence and Data Referencing

The DBMS must contain a Data Definition Language (DDL) capable of
structuring the data as perceived by the user. Restructuring to accommodate
different user'views (reference 8) must be supported. Insulation between the
program and the data with which it interacts is necessary so that
restructuring or re-definition of the data minimizes program modifications.
Program data independence can be accomplished by a stored data definition
that is accessed at program execution time. A CODASYL compatible DDL
(reference 9) should be provided to describe a global logical view via a
schema and logical program view via a subschema.

Data referencing is achieved by assigning specific names through the DDL
to data entities which will be referenced. Interaction with data can then be
direct through named variables. The capability of naming data bases, files,
records, segments and rows is required. Matrix support should include
modeling of data into elements, rows, and segments, providing for n-
dimensional array storage and retrieval.

Flexible Data Modeling

The DBMS must be flexible enough to handle multiple data structures for
large and small files of varying complexity and should have multidirectional
retrieval capability (reference 10). Support is needed for sequential and
random searching of the data base for specific record names, ranges of record
names, generic keys and specific data values or ranges of values (through
Boolean operators). It must provide inverted index capabilities and provide
for searching these indices. Data relationships of a network type are
desirable with hierarchical structures supported as a subset of networks.

Data types used in scientific applications (floating point, double
precision and complex variables) must be fully supported. Some reformatting
of data should be accomplished by the DBMS. That is, floating point data
should be retrievable in integer or character format, and double precision
data should be retrievable as single precision.

In scientific applications, array data is fairly common. Arrays vary
from simple one-dimensional fixed-length to n-dimensional variable-length
types. Typical sparse matrices found in finite element codes offer a
challenge to any DBMS.

29

Device Independence

,The DBMS must perform the functions of space allocation, data placement,
data expansion/compression, and overflow in order to relieve application
programming of these tasks. Programmers and end users should remain unaware
and need not concern themselves with physical placement of data. Thus, when
new storage devices are'installed or tuning is necessary or expansion occurs,
no application systems are impacted.

Management Utilities

A full complement of system utilities is needed to accomplish system and
maintenance functions separate from application involvement. Support is
needed to reorganize data to improve performance, to obtain storage and usage
statistics, to redefine and restructure data, to compare data and to satisfy
other related needs. Backup and recovery support typical of any DBMS is also
required.

Off-line Storage

An important requirement, often overlooked, is the management of off-
line data. All data do not deserve on-line residency all the time. An ef-
fective DBMS must manage the continual exchanges of information between off-
line and on-line storage. Restoring data to on-line status should be as rapid
as possible and should be a normal operational procedure.

Multi-CPU Environment

A requirement for P&WA's DBMS is full support on multiple CPUs (reference
11). The engineering computing facility for scientific applications includes
two loosely coupled mainframes, one for interactive applications (under VM/CMS)
and one a batch facility (MVS). One data base is planned for both
environments. The ability is required for multiple, concurrently running
programs to access and/or modify the same data from multiple machines and
systems without inadvertent destruction of data. Concurrent users of the data
base could be over 200. Terminal response time for interactive design and
manufacturing applications utilizing the data base must be acceptable.

COURSES OF ACTION

Deciding which course of action is appropriate in addressing scientific
data management requirements is not simple. Much depends on the status of a
company's computerization, its computer expertise and its business - -
opportunities. Four scenarios can be considered.

30

1. Do Nothing
2. Educate
3. Build In-house
4. Procure

Do Nothing

The incorporation of a scientific DBMS may be a long term proposition, or
just may not be necessary. If it is intended to keep the computing effort to
a local, problem solving level, there may not, be much concern with improved
data.management technology. On the other hand, companies where data
communications are becoming more important will find that doing nothing is
not a viable option. The potential for improving the design and fabrication
processes will be slowed by the continued re-creating of tailored data
management software. Data maintenance tasks will tie up manpower and thus
compete with efforts for new software development. Within established
operations relying on computerized methods, the influence of effective
information handling of technical data will ultimately be felt in the
competitiveness and profitability of the business.

Educate

If there does not seem to be a need to become involved in a data base
management project at the current time, although a future requirement is
foreseen, an education effort may be undertaken as preparation. Under this
scenario there are several degrees of commitment from periodic attendance at
related conferences and seminars to intensive studies and prototype
evaluations of potential data base management systems. For many companies
this choice becomes a convenient middle-of-the-road position. Factors
contributing to an educational approach are:

1.

2.

3.

No existing approach meets all the data base requirements of scientific
applications (reference 12). System performance, interfaces to procedural
languages, data typing and structuring are areas of concern. More time is
needed for commercial DBMS offerings to adapt themselves to scientific
applications.

Hardware technology, including distributed processing and microprocessor
development, may change the processing approach enough to dramatically
impact data base systems. Back-end processing is becoming a popular
notion but not available today as a production product (reference 11).

Software technology, particularly in the area of relational data bases,
offers great promise but is yet to be proven (reference 13). Geometric
data bases would benefit from a truly relational and dynamic approach to
data modeling.

31

4. Scientific programmers are generally not knowledgeable in the field of
data base management. The world of DBMS is primarily a business-based
environment (reference 14). Concepts and terminology are foreign to
scientific computing. The near term objective can be to train the
scientific area in the basics of DBMS.

5. The integration of scientific computing systems is inevitable, following
the trend in business systems. Many computing organizations, recognizing
a need for improved scientific data management but faced with near term
projects and problems, cannot pioneer an all out effort in scientific
data management. The risk is too high, the payoff not clearly identified.

Build In-House

This scenario is one for organizations ready for major scientific data
base integration today. A difficult decision might be required to differ-
entiate between a build or buy strategy. Arguments for in-house develop-
ment can be quite convincing and made in terms of the following considerations:

1. Unique requirements can be addressed more efficiently. Tailor-made
systems can perform more efficiently and require less resources than
general systems. Major applications of one generic type may be large
enough to merit a DBMS implementation in a unique form, i.e., systems
for geometric modeling or data acquisition. The total generality of a
typical DBMS is not required.

2. In-house expertise might be available for system development and follow-on
support. Large operations are more apt to find in-house implementations
attractive.

3. An in-house supported DBMS allows for tighter control in the establishment
of development and maintenance priorities. Enhancements to a vendor
supplied DBMS depend more on the market demands than on an individual
company's immediate needs.

Procure

A viable approach for applications requiring immediate support is to
procure a commercially available DBMS. This approach is based upon the
assumption there is a product which is either suitable as is or can be molded
into a satisfactory package. Again, for scientific applications, the problems
of host language interface, data types and structures need special attention.
Advantages to procurement include:

1. A DBMS procurement is a known cost compared to an in-house development
project. It should be possible to determine installation, programming
and support costs accurately; whereas, a major development cycle carries
the added risk of cost overruns.

32

Procurement costs will be less that development costs if the general
features of an existing DBMS are required. DBMS vendors are reaching a
software maturity which is hard to match with an in-house effort. The
development costs of the supplier can be written off to hundreds of
customers over years of operation.

Known capabilities of a procured DBMS present a lower risk in meeting
requirements. A careful evaluation can be made through prototype
applications, benchmarks and other.installation studies. It is possible

' to know precisely how a DBMS will be used for given applications.

4. Although a procured DBMS may not satisfy all requirements, it may serve
as'a springboard for enhancements.or internal modifications designed
to address unique requirements. The fundamentals of data management
may be basic enough to use as the core of an internal development effort.

5. A software house specializing in data base management is likely to
stay abreast of new hardware and software technology and, hopefully,
will enhance their DBMS as new features or techniques dictate (reference
15).

SUMMARY

Increasing software development costs and a changing emphasis on
scientific data handling suggest that the time has come for data base
technology to find its way into scientific computer applications. While
working towards an expansion ofsystemsintegration for P&WA's design
process, features of a scientific data base management system have been
identified. Differences exist between the business and technical applications
which have significant effects on the successful implementation of today's ,
vendor marketed DBMS. Depending on a company's business objectives and level
of computerization, an appropriate course of action may vary from no action
to immediate procurement and use of a commercially available DBMS for
scientific applications.

33

REFERENCES

1. Nilson, E. N., "The CAD/CAM Interface: Problems and Solutions,' 15th
Numerical Control Society Annual Meeting and Technical Conference,
Chicago, Ill., April, 1978.

2. Lopatka, R. S., "Engineering Computer Graphics In Gas Turbine Engine
Design, Analysis and Manufacture,' Conference on Application of
Computer Graphics in Engineering, Langley Research Center, Hampton,
Virginia, October 1975.

3. Lecht, C. P., "The Waves of Change," excerpted in Datamation from April,
1977 to October, 1977.

4. Appleton, D. S., 'A Strategy for Manufacturing Automation,' Datamation,
October 1977.

5. Cohen, L. J., Data Base Management System, Q.E.D. Information Sciences,
Inc., Wellesley, Mass., 1976.

6. Astrahan, M. M., Blasgen, M. W., Chamberlin, D. D., Eswaran, K. P.,
Gray, J. N., Griffiths, P. P., King, W. F., Lorie, R. A., McJones, P.R.,
Mehl, J. W., Putzolu, G. R., Traiger, I. L., Wade, B. W. and Watsqn, V.
"System R: Relational Approach to Database Management,' ACM
Transactions on Database Systems, June 1976.

7. CODASYL Fortran Data Base Facility - Journal of Development, Department
of Supply and Services, Canada, January 1977.

8. Martin, James, Computer Data-Base Organization - Second Edition,
Prentice-Hall, Inc., Englewood Cliffs, N.J., July 1977.

9. CODASYL Data Base Task Group Report, ACM, New York, N.Y., April 1978.

10. Browne, J. C., "Data Definition, Structures, and Management in Scientific
Computing," Proceedings of the Third ICASE Conference on Scientific
Computing, Academic Press, New York, N.Y. 1976.

11. Woods, L. D., 'Distributed Processing in Manufacturing,' Datamation,
October, 1977.

12. Bandurski, A. E. and Jefferson, D. K., 'Enhancements to the DBTG Model for
Computer-Aided Ship Design," Proceedings of the Workshop on Data Bases

I for Interactive Design, University of Waterloo, Waterloo, Canada,
September 1975.

13. Ross, R. G., "An Assessment of Current Data Base Trends, "Data Base
Monograph Series, Q.E.D. Information Sciences, Inc., Wellesley, Mass.,
1977.

34

“-; j’

'+ 14. Palmer, Ian, Data Base Systems: A Practical Reference, Q.E.D.
Information Sciences, Inc., Wellesly, Mass., December 1975.

15. Curtice, R. M., "The Outlook for Data Base Management," Datamation,
April 1976.

I -

35

CALL

OPEN

CLOSE

RECORD

RECLIM

SYMDEF

COMBINE

ADD

DELETE

UPDATE

SEARCH

RETRIEVE

INFO

To retrieve data at any level of named data.

To provide file and record information to the FORTRAN host
program.

SAVE To provide a checkpoint on the record level.

QUIT To back up to a checkpoint. To be used if updates were un-
satisfactory.

TABLE I

DATA MANIPULATION FUNCTION

To open single or multiple files.

To close single or multiple files.

To selectively locate and restrict by record-name that data within
a user file that will be made available to the application
programmer to initiate other data manipulation commands. It also
enables sequential processing through a file.

To establish a range of record-names for which sequential
processing may be performed.

To generate a- symbol table at execution time to be used by the
data base management system when interfacing with data files.
The symbol table will relate the data base names to their
FORTRAN variable names along with. their respective data base
addresses and run time core locations.

To enable the programmer to logically group rows and refer to
that grouping by a name.

To add data into a file at any level of named data.

To delete data from a file at any level of named data.

To update or modify the contents of a file at any level of named
data for any record-name.

To search the data file based upon some test criteria and to
return specified data or information that may be used in
conjunction with the following call "RETRIEVE".

36

SHARED k
DATA BASE

FLOW ANALVSIS

HEAT TRANSFER

ARY

%

PROGRAM EXECUTION
. -1 I I

Figure l.- Interactive design system operation.

37

w co

3 FINAL
DATA

A

1

l-Ail

CAM

B

CAD (

RETRIEVAL

!

NSIENT DATA),

USER LIBRARY *

T--
I

‘f&J @EVA, 1

Figure 2.- Central - a file management system.

#l TITLE
4

#2 ENGINEER’S NAME

AIRFOIL EMD

#4 ASSOCIATED PART NUMBERS,
I

ASSOCIATED EMD NUMBERS
I

Figure 3.- Header records.

ATTRIBUTES

APPLICATION TYPES

DATA TYPES

DATA SIR UCTU RES

DATA DEFINITION

PROCESSING

DISPLAY

ADDRESSING

COBOL

PROCESSING DATA
SYSTEM GENESIS

PACKED DECIMAL
BINARY
ZONED DECIMAL
CHARACTER

DATA LEVELS
ELEMENTARY ITEMS
GROUP ITEMS

DATA DIVISION
FILE SECTION
WORKING STORAGE SECTION
LINKAGE SECTION
REPORT SECTION

TRANSACTION (RECORD) ORIENTED

PICTURE CLAUSE

BYTE LEVEL

FORTRAN

SOLVING MATHEMATICAL PROBLEMS
SINGLE APPLICATION GENESIS

FLO+TING POINT
INTEGER
COMPLEX
CHARACTER

SCALARS
ARRAYS
MATRICES

SPECIFICATION STATEMENTS
COMMON
EOUIVALENCE
TYPE
DIMENSION

PROBLEM (MULTI-RECORD) ORIENTED

FORMAT STATEMENT

WORD LEVEL

Figure 4.- Attributes COBOL versus FORTRAN.

PANEL DISCUSSION - SESSION I 6
SESSION CHAIRMAN:

Elizabeth Cuthill, David Taylor Naval Ship Research and Development Center

PANELISTS:

Steve Fenves, Carnegie-Mellon University
Stig Wahlstran, Boeing Commercial Airplane Canpany
Henry Loschigian, Grumman Aerospace Corporation
Lynn Maas, Los Alamos Scientific Laboratory
Richard Lopatka, Pratt and Whitney Aircraft

PARTICIPANTS:

Tom Houston, Affiliation unknown
Mike Newman, Cessna Aircraft Canpany
Jim Foley, The George Washington University
Linda Kirschner, Smithsonian Astrophysical Observatory
Tom Corin, David Taylor Naval Ship Research and Development Center
Dave Zemer, Northrop Corporation
Don Fairhead, David Taylor Naval Ship Research and Development Center
Susan Voigt, NASA Langley Research Center
Tom Johnson, Pratt and Whitney Aircraft
Bob Fulton, NASA Langley Research Center
Jaroslaw Sobieski, NASA Langley Research Center
John Hubbs, Martin-Marietta Corporation
P. K. Basu, Washington University
Don McQuinn, Canputer Sciences Corporation
Dave Roland, Informatics, PM1

41

Elizabeth
Cuthill

Unidentified
panelist

Lynn
Maas

Unidentified
questioner

Stig
Wahlstrom

Tom
Houston

Steve
Fenves

PANEL DISCUSSION - SESSION I

O.K. I guess we can get started again. In this discus-
sion, it's important for each person asking a question to first
identify themselves so that it will be clear in the transcrip-
tion from whence the question came. We thought we might start
by letting the panel members ask questions of each other, and
then open it up to a general question and answer and discussion
period. We are addressing needs and requirements and I guess
in subsequent sessions how these needs and requirements can be
met. Whether it's possible to meet them will be discussed, but
at this point we're just addressing needs and requirements.
Perhaps you could start with the panel if you have some burning
questions you'd like to . . . yes?

I would like to ask Lynn what kind of color scope he used.
I admired his beautiful vu-graphs; and how did he sell his boss
on going out and buying one?

The slides for my presentation were generated on a CDC 6600
using the DISPLAY software package with a driving program. The
film was recorded on an International FR80 of which we have two
and are getting a third. These are very heavily used - they
run 24 hours a day, 7 days a week.

I have a question for Stig. We can view data management
software two ways: as end results for the user in terms of
meeting his requirements and also as a tool of a programmer to
develop those capabilities that are listed as requirements.
How does IPAD particularly look at data management software?
Is it going to be primarily a tool for our computer programmer
to use and develop his unique requirements, or is it going to
be the kind of a thing that is going to do a lot of things in
general for everybody?

To me, the computer programmer and his programs or what-
ever is still a means to the end user. The engineer is the
important person and I only stated his requirements from his
point of view. The fact that a computer programmer has to be
between him and the data management system is incidental. And,
of course, that is true; the end user must be served through
the programmer.

,When you talk about mapping programs. Can you give an
example of what you might put in?

First of,all, the mapping can be conceptual, it does not
have to be procedural. If it happens that the data generated
by a predecessor program are already in the format required by
the successor program, then the mapping may be simply an
extraction of one subschema from a general schema. Only in the
worst possible case of mismatch do you have to do a procedural,

43

L-

Mike
Newman

Henry
Loschigian

Stig
Wahlstrom

Jim
Foley

Stig
Wahlstran

an interface program that copies data represented in column
format to data represented by row-format by the next program.
Hopefully, as integration proceeds and you start developing new
modules based on an integrated scheme, as opposed to merging
programs that existed before, more and more of the mapping can
be implicit rather than procedural execution.

How do you see IPAD interfacing with a system such as -
RqVES, for example?

Well hopefully, IPAD will live up to the promise and give
us the kinds of things we need for file management We
operate under the IBM DMCMS system, and we can take these com-
puter programs and run them as an integrated set of technology
modules under any operating system that we could compile on,
that we could run under, so the executive procedures relate
only to the file management and program control and the tech-
nical modules are interfaced independent of our executive
system. So if IPAD provides for us a superior executive file
management system it should not be a problem for us to adapt
to that environment.

I think that is a good description of what will happen.
IPAD as perceived and as fully implemented would replace the
data management and executive functions of such a system and
do it better. I think that IPAD will be flexible enough to
allow such a stepwise approach to replacement of such execu-
tives and it will act at first as a data depository or data
manager for the system. Maybe it will replace the executive
functions. I don't really know. I think that it's going to
be so that canpanies will have that option.

My question is directed to Stig. You implied in the dis-
cussion of higher level requirements that there was a single
hierarchical structure in airplane control information and man-
agement environment - that someone owns the wing and someone
owns the body. Isn't it the case that there are multiple hier-
archies for hydraulic systems; for instance, there is hydrau-
lics in the wing, and hydraulics here, and electrical systems
throughout the plane. I don't quite perceive how . . .?

I think I understand what you talk about. I think it's
true what you say that Boeing Airplane Company has many air-
planes, maybe several libraries and so on. But, I think that
there is ultimately one owner; there is one chief hydraulic
engineer on an airplane, but there is going to be one chief
engineer that is in charge of him. There is one chief struc-
tural engineer and there is one chief other engineer. So there
is still a boss someplace over these others. I feel that the

44

hierarchy structure is sufficient. In a sense' of using the
hydraulic data, or using the structural data for the tube
design or the hydraulic design, they still have separate
ownership in the current environment,

Unidentified
questioner 1

(question inaudible)

Henry
Loschigian

O.K., what we do at Grumman is we're on line with our
terminals to the AMDAHL V5 for the HAVES system. We have pro-
cedures for transmitting and initiating jobs to be run on other
canputers in a batch mode. Now depending upon the work load
in these other computers, the user will have the output returned
to his virtual reader (that's the terminology we use on the
VMCMS system) during an hour-long terminal session within 5 min-
utes or 15 minutes depending on the work load in the batch com-
puters. If the work load is too high, data is still returned
to his virtual machine but he will not necessarily be using
that terminal or be logged in. He can come back at a later
time and find his data waiting for him. He's only one line to
one computer at a time. In the GEM system the terminals are
on-line to the same computer that we use for the batch system.
They do that by time-sharing within a particular VSOS initiator.
We have four terminals on-line to one initiator, and the VSOS
system has multiple initiators so that different systems at
Grumman are on-line to different ccnnputers. None of us are
on-line simultaneously to more than one. We can direct jobs
to be initiated at other canputers.

Linda I notice you mentioned using minicomputers for data manage-
Kirschner ment. Could you give me more information about what you found?

Lynn
Maas

We really haven't looked at them extensively enough to
come up with a list to give you to go out and buy one. The
class of machines that I was referring to is that of the 32-bit
minis, and the reason we think this is a very attractive area
to pursue is that the cost of the disk storage is coming down,
the processing power is rising so that they are going to be
powerful enough machines with enough on-line storage to accom-
modate the data bases we'll be interested in maintaining and
have enough compute power to process some of the data that was
retrieved and present it in a knowledgeable fashion to the
designer. Those are the characteristics of these machines that
make them attractive to this type of operation.

John
Hubbs

What is the status of the IPAD project and secondly, will
IPAD concern itself with change management and configuration
control?

Stig
Wahlstrom

The status is the contract has been underway about 2 years
and approximately a year ago background documentation and a set

45

Unidentified
questioner

Dick
Lopatka

Tom
Johnson

Dick
Lopatka

P. K.
Basu

Stig
Wahlstrom

of requirements had been compiled. Since that time a prelimi-
nary design of the software, something that is called a full
IPAD, has been underway and is now a few months behind the
original intended schedule. There was a schedule set at the
beginning of the contract, so the preliminary design is behind
that, but will canplete within the next few months. At that
time a subset of that full IPAD that has been designed will be
selected to be built with the remainder of the funds in the con-
tract, probably in another year the first release of software
will occur and the contract is scheduled to run for 5 years,
so it is about 3 more years to go. Of the funds, we have con-
sumed about 30 percent for the manpower for requirements and
all the preliminary design. I don't know all details.

(question inaudible)

I think that is an excellent point. I think somebody has
to get around to trying out in some very rigorous way the capa-
bilities of the existing DBMS in the technical or scientific
environment and find out for sure whether these things are
applicable or not, and I think that is Pratt and Whitney's
direction at this point. We're going to take about a year to
try one of these and see if it can handle the volume of data
types we're after and the data modeling type problems we have
and maybe a year from now we can answer some of these questions.
We're going to try IDMS which is a commercially available data
management system that meets the CODASYL specifications. They
have some portability associated with it and that doesn't meet
all the requirements, as I said, but it has some promise at
least. Yeah, we looked at IMS. Well, I don't know how to
answer that question. I can defer that to my colleague, Tom
Johnson.

(comments inaudible)

We've seen some very sketchy documentation on that, and
it did not look that attractive to us. The other issue is that
we would like to go to a more generally accepted data manage-
ment philosophy so we are advocates of standards in this area.

Will IPAD be open to the public or not?

It's currently subject to FEDD. It means For Early
Domestic Dissemination, which is a control that federal
agencies, I think, impose on some of their contractors. The
strict legal meaning of that, I don't really know, is that
U.S. canpanies, bona fide U.S. ccmpanies, would have access
to it. Can I refer that question? Bob, can you take it?

46

Bob
Fulton

Unidentified
questioner

Unidentified
panelist

Tom
Corin

Henry
Loschigian

The answer is, yes, it will be available for use in the
U.S. for most universities and ccmnpanies.

(question inaudible)

I don't know, the last time I heard - 2 or 3 years ago,
when I heard Mr. Rosenbaum make a presentation - at that time
they mentioned things like 50 to 100,man years or so of inter-
facing their computer programs. They have 200 or so programs
right now. The whole idea of IPAD is that maybe it's going to
be a little bit cheaper to try and do the same thing in your
plan. It's going to be 25 man years instead of 50 or so, I
don't know. I cannot really answer that question, but the
intent is to establish standartis and rules and also software
support for that integration or interfacing, whatever you want
to call it, in the sense that it would be software modules that
will examine existing code and maybe find the I/O statement.
I don't really know exactly what it entails, but there would
be such services available in IPAD, but it will not be free,
there will have to be some amount of human work on it.

I notice that RAVES is available using IBM, CYBER, and
AMDAHL. My question is, do the IBM programs in cases derive
data from CYBER systems and what, if any, arrangements are made
to adjust for the possibility of 60-bit words in the CDC? And
then if I may transfer my question over to Stig, one of his
top level requirements is to provide a single source data bank
accessible to all users. And when you say all users does that
mean people who have IBM, CDC, UNIVAC, Honeywell, and minicom-
puters? Will there be some rules laid down for the format of
the data?

Cut me short, if I take too long. RAVES makes use of a
variety of computers. We use the CYBER, as well as the IBM 168
for doing batch ccmputing. The RAVES system utilities execute
on our interactive time-sharing computer which is the AMDAHL V5
that uses the IBM operating system VMCMS. From that interactive
computer, using the VMCMS system, we can initiate batch process-
ing tests to other canputers. We have on these other computers,
libraries of programs that execute on that particular computer.
We might have a program, and we do have programs for example,
mechanism motion programs that execute in the batch environment.
We have a version of that program on library disk packs on both
the 168 and on the CYBER computer, and each program is optimized
to take advantage of the larger word size. Now generally we
go to the CYBER machine for those engineering problems that
require the larger word size. St's usually a trial-and-error
process. Our most easy path for communication is to drive the
analysis from the AMDAHL to the 168. If after evaluation of
results we feel that the analysis would benefit from a larger
word size, we would reinitiate the analysis using the exact

47

.

I

Stig
Wahlstrom

Tom
Corin

Stig
Wahlstrom

Don
McQuinn

Stig
Wahlstran

same input data files and task that job to the CYBER machine.
To the CDC machine it would be a different program source code
but it would take the exact same input data files.

Tom, that was a set of tough questions. You're actually
asking me how the software design as implemented is going to
meet the very broad requirement that it is available to all
users. i&,

The NASA representative said that he wanted to get all the
questions down. Certainly in the Navy where we're dealing with
all kinds of canputers . . . I'm thinking about having data,
for example . . . I believe IPAD is first going to be imple-
mented on the CIX (it's got 60-bit words) and somebody wants to
use it on an IBM. Unless you recognize this

Well yes Tom, . . . I think I'll make one little answer
to the complex question that you started. I'd like to say that
initially when we started out 2 years ago to work on IPAD, we
stated the requirement then that IPAD was supposedly independent
of software considerations and user requirements. In the pro-
cess of anticipating these requirements and meeting them, the
software designers had some design in mind of what IPAD might
look like and how it would run and work against hardware and
so forth. At that time they had a single ccanputer system in
mind, but that has changed over the past year - half year at
least - so that the current view of IPAD is a network with, in
essence, processing elements hooked up with a high speed com-
munication network. Where specific functions would be available
on some of the elements of the networks and where the user (at
least this is my understanding of it - I might be wrong] would
want to perform a certain function using the IPAD system and
he would then get onto the computer to peYform that function
and then he would use the IPAD system to obtain the information.
Either he has to insert them or he has to extract some informa-
tion already in there from the IPAD system and that extraction
of information is how it's brought to his machine, whether the
IPAD data manager takes it off his machine or has to move it
via a network. That is kind of a top view of it right now.

Does this imply that not all functions will be available
to all coknputers on IPAD?

The answer is yes. There will be selective functions
available on the various elements of the network. I think the
full answer is wherever the functions are placed is going to
be an implementation problem that individual implementers will
have to face up to their own distributive needs and their own
available hardware.

48

Dave
Zemer

Stig
Wahlstrom

Dave
Zemer

Stig
Wahlstrom

Dave
Zemer

Stig
Wahlstran

Don
Fairhead

Dick
Lopatka

There seem to be a lot of parallels between what you're
doing and how NASTRANl was designed 10 years ago. Are .you
talking to NASTRAN people or are you keeping it completely
separate? They do keep up four machines at McNeil-Schwindler
and COSMIC.

Hope not! I'm sorry, perhaps I should give a better
answer.

Yes, I think you should.

NASTRAN currently has four versions of kind of the same
general functions and capabilities on various hardware, but
they don't deal with any connnunications between those hardwares.
If you have a virtual NASTRAN, like IPAD, it's going to access
as one single IPAD, implementable on any canputer you want to
select. I think there is some difference there.

NASTRAN, except for the assembly language, 90 percent is
FORTRAN and 90 percent of it, I think, is used on CDC or UNIVAC,
or IBM. And it has internal coding that lets it jump from
single to double precision depending on the machine, for
example.

You're putting me on the spot, because I'm not prepared
. . . . You're talking about the design of IPAD and what is it
going to look like. I was here to kind of tell you what the
user requirements were in the high level sense, and I don't
really know how to answer those things. I don't have the
foggiest idea about it.

I would like to come back to an earlier question which
dealt with the unique needs and requirements of scientific data
management from business data management. The answer I've
heard so far is a FORTRAN interface. My question is not
directed to any particular panel member, but what are the
unique requirements of scientific data as opposed to business?

Maybe I can give a start to that. I think the question
of the volume of data is probably something that is somewhat '
different from the business area. Maybe they're more record
oriented in small records than we are. I think the terminology
in itself is probably the biggest stumbling block right now.
Maybe there isn't that much of a difference and we just think
there is, but we can use that cop-out later. Beyond the
FORTRAN interface, I don't think we know the good ways to

lNASTRAN: Registered trademark of the National Aeronautics and Space
Administration.

49

Steve
Fenves

model data yet and we haven't really figured up how to do that
properly. We suspect that geometric data in particular has a
degree of network structure to it , maybe you have to go to rela-
tional systems to do it properly to do the update-performance-
type job you have to do with geometric data and that's a special
case that needs scientific data. In the other areas, I'm not
sure myself how different they are. We lock on the FORTRAN
interface, because we can't get to the data and we can't work
with it. FORTRAN we're comfortable with already, so we go
through these gyrations to try to get to the data and try to
live within the structures and in the forms that are given to
us in the business type environment. Maybe that's the biggest
stumbling block.

I jotted down four items. First of all, the business of
iteration, which doesn't seem to be nearly as important in
administrative and business data processing as it is in engi-
neering. There are some provisions for running trial balances,
reconciling them and so on, certainly not to the level and com-
plexity the engineering data base needs. The question of vari-
able ownership has been brought up a couple of times. We seem
to have much looser lines of control in engineering than people
do in business. Multiple lines of ownership by project and by
discipline are very common in engineering and running that kind
of file security is very difficult. The question to ask, what
does the data ownership mean? You ask yourself a simple ques-
tion. Who in your organization is authorized to delete the
file? That's the person who has control. The third item I
sketched is unpredictable growth. Through the design cycle of
the major engineering systems, you simply do not know what the
structure of the data is going to be, what kind of attributes
are going to be needed, and what kind of hierarchy growth will
take place. That again, seems to me to be much looser than
what is commonly in business data systems. And .fourth, sort
of related to all these three, we have multiple networks of
data. A relational data structure would be marvelous for all
of us, but not all of us need that relational data structure,
because any discipline by itself has a very clear-cut hier-
archical network structure for those attributes of interest to
them. The trouble is not one discipline controls design. The
design is the output of 15 to 20 disciplines, and the problem
of providing a data base that is as efficient for any one dis-
cipline as possible and at the same time is a union of the net-
works of all disciplines is again a problem that I've not seen
in the business data processing world.

Jaroslaw
Sobieski

I would like to comment on this subject. In my opinion,
one of the central differences between the business. data base,
such as my bank is using, and the data base that we are using
in research and development in engineering is the enormous
volume of attributes that are needed to describe the items that
reside in the data base. In order for that data base to be

50

Dave
Roland

Dick
Lopatka

truly self-explanatory and self-documenting To give you
an example, if I, a structural engineer, need a set of aero-
dynamic loads, I must know a lot about those loads and I must
know a lot of quite subtle assumptions that underlie those num-
bers. If I don't know these things, they are simply meaningless
numbers to me. It seems to be unrealistic to keep in the data
base, together with a particular data block, all the underlying
information. That would really require some time to put books
into the data base. The effect of getting around this nowadays
is simply that I am calling a gentleman whom I know that is
also responsible for that particular data block. I'know him
as a canpetent aerodynamicist and I accept this data on the
strength of his signature. Now this simultaneously simplifies
the data base organization and requirements. Since I have to
call that particular fellow to get his confirmation of that
particular data block, I may as well get from him the name of
the data file this particular data block resides on. That is
a side benefit of that situation. However, if we ever are
to get to the point that the data base is to be truly self-
documenting, I am afraid that we will have to find some way of
accommodating all that enormous volume of attributes that go
with engineering information. And I would like to ask the
question at large whether there is any realistic way to solve
that problem.

The problem mentioned was that we didn't know necessarily
our data structure or data format. The data base manager has
to have the strength to change people's approaches. One of the
things that came out of IPAD is that I think it's structured
too much towards the way we do business today, and we're going
to have to lcok at how the new system will be different. I
think one of these approaches will be that we won't be storing
data only, we're going to have things that operate on the data,
and these are programs in our sense today, but to a user it
will be an extension of this data base and he won't see it as
a separate program.

I'd like to answer that. My experience with technical
computing people is they think the data belongs to them. I
haven't really gotten used to the idea that the data belongs
to the company, or at least some subset of it does. Their mode
of thinking and their individualism kind of overtakes them, so
I think there's not only a software problem here, it's an
organization problem and philosophy problem that has to be
overcome in each company. To agree that, yeah, we do need a
data administrator, a data base manager for scientific data.
We have to figure out what they're supposed to be doing, what
their jobs are, what grade levels they are, and what their
responsibilities really are. Once we get this software going
it's going to be problem number two.

51

Stig
Wahlstran

I don't share that view 100 percent, I share a little of
it. I've had the privilege of working on this IPAD for a
couple of years now, to work with several people of the type
that I've never run into before. One was a Boeing engineer in
1914, and he saw two airplanes roll out each day, B17's, on the
runway to the airport to stop the Germans in Europe. As a
little boy I grew up in Sweden, and it happened often enough,
that people came into Sweden, so I was aware of them. This
person has been a Boeing designer with pride. He's taken pride
in his data, it's not his data, it's the ccmpany's data, all
the way. From those airplanes to the very successful commercial
airliners that dominate the world today. I have also had the
privilege to meet the person who is in high management now who
overnight in a dirty motel room in Dayton designed the B52 wing.
He claims that was the one that actually sold the Air Force and
has been very successful. The engineers are responsible for
their data. They have to be responsible, you cannot let the
canputers take that away. You have to have a system whereby he
releases his data, and he signs it off, and he is responsible
for it. There is no change to that.

Henry
Loschigian

You know, by saying that the data doesn't belong to the
engineer or to the discipline and it belongs to the company,
you might lead yourself into a situation where the individual's
no longer responsible. It's a very dangerous thing to do. I
think the data does belong to the engineer, he has the responsi-
bility of sharing that data and letting everybody know in
advance precisely what kind of data he has produced, and what
he will be doing so that project managers can plan and antici-
pate, so that the various disciplines and tests can be properly
coordinated. He has to share the data by providing his data
into some master system, where it will be retrievable by other
people. But to have the concept that he surrenders the data
and it's no longer his responsibility, and it's no longer his
data, and that data can be changed by someone else could get
us into a lot of trouble. I really don't know what ought to
be done in terms of a data base system for a multidiscipline
environment. I don't know if we in engineering can jump into
something of a business-type system data base environment. We
might evolve into a business data base environment by simply
taking the one step up from where we are right now. Right now
on RAVES, and I'm sure there are similar things going on in
other canpanies, we have basically the file management system
and each project has hundreds and thousands of files. For
example, on a given aircraft project like a 747 project, the
aerodynamicist may have hundreds of different kinds of data
files, each one of which may have similar kinds of data.
There's block data and there's point data. There's table data,
matrices, if you will. You might not ever want to put that
kind of data into a data base system, you might always want to
keep it out and handle it in a file management system. There
are other kinds of data which I normally refer to as point

52

l”i
I i -!

Susan
Voigt

b

Carol
Price

data. This kind of information is useful and required by all
analyses programs - certain analyses programs will need a sub-
set of the point data for aerodynamic information on a 747.
So quite conceivably, the first level of data base you'll see
in engineering will be a data base in which we'll have stored
by variable names certain kinds of point data for a particular
technical discipline on a particular project. Not one gigantic
master data base for all technical disciplines simultaneously,
because that raises very difficult, radical management problems.
Who maintains and updates that single data base? If it's one
single data base, that means that everybody has to share the
ability to write into that data base. You don't have any files
security that way.

My question is a philosophical one and I hope it can be
discussed during the conference. It probably will be addressed
in pieces and parts, but generally I think back 10 years ago,
the state of the management information systems which I think
we could call the precursors of today's commercial or business
data systems, and how much a state of disarray it was, and how
there were many, many disasters of developments of large
management information systems. And I wonder if perhaps the
scientific community is now beginning to go through the same
throes, and if perhaps we, too, are going to have to grow and
get used to and change our organizations and our way of think-
ing about our data, so that we can accept the fact that there's
going to be data administration, that the ownership of the data
would be more controlled, and that each individual will not
take this ownership seriously as being his own personal stuff
that he keeps in his own little file. It will become a con-
trolled organizational environment. I think this relates to
remarks that have been made already this morning, for example,
dynamic expansion which Dr. Fenves mentioned Will that
be something that's truly unique to our engineering and scien-
tific data, or is that something that we really can relate in
some other way if we can communicate with what is already happen-
ing in the commercial area. In the area of changing of the
ownership Can we really say that ownership resides one
place or another place? Multiple ownership? These kinds of
questions may be resolved if we eventually talk about the how
we're going to redo our management in order to handle our data
differently.

(inaudible) . . . and then we have another set of data
which is basically our card. image data for which we use a
software product called PANVALET. I don't know how many of you
are familiar with this product, but we are now starting to base
a lot of our file management on some of the attributes that the
PANVALET system can provide. It provides several pieces of
data about the data, and that's primarily some of the stuff
that we have to address today. One of the things that it pro-
vides is called the user code. This goes back to individual

53

use and responsibility for data, and what we've done with this
is it's set up so (inaudible) . . . multiple engineers or in
fact by multiple divisions - for example, data going from loads
to structures. This takes on a more significant priority, and
through naming conventions and user codes we assign it that
type of status. Then the person responsible for this data is
at the project level so we treat our data differently depending
on how it is being used and how it is being transmitted. I
think that one of the things that we found in attacking our data
is that no one data management system seemed to handle both
kinds of data. Now perhaps with experience we can improve the
different data management systems we have, but what I’m looking
for is some comment on the data information system or something
that I was hoping wouid be coming from IPAD, which would con-
tain information about data so that you would then be able to
apply the appropriate data management system to the appropriate
data.

54

7
ADVANCED PROGRAM WEIGHT CONTROL SYSTEM

G. T. Derwa
Ford Motor Company

SUMMARY

This paper describes the design and implementation of the Advanced Program
Weight Control System (APWCS) at Ford Motor Company. The APWCS system allows
the coordination of vehicle weight reduction programs well in advance so as to
meet mandated requirements of fuel economy imposed by government and to achieve
corporate targets of vehicle weights. The system is being used by multiple
engineering offices to track weight reduction from inception to eventual pro-
duction. The projected annualized savings due to the APWCS system is over $2.5
million.

BACKGROUND

Each Product Engineering Office (PEO) has the responsibility of reducing
weight on all vehicles in order to achieve significant increases in fuel
economy. The Vehicle Engineering Office (VEO) has the responsibility of coordi-
nating the entire weight reduction program and ensuring that each vehicle meets
target weights. The task is difficult due to the environment within which it
is performed. Situations include the following:

Suggestions for weight reduction from many sources

Changing estimates of potential weight savings for any given weight
reduction action

Constant drifting of weight reduction actions due to running changes
required to solve problems , government requirements, introduction of
new competitive changes, changes in cycle plans, etc.

Dependence of certain weight reduction actions on other weight
reduction actions

Currently the engineers have to evaluate between 200,000-500,000 combina-
tions of weight reduction proposals and applicable carline-powertrain-body
style configurations for model years 1980 thru 1987. An automated system was
thus required to provide improved control and reporting of weight reduction
actions, as well as improved forecasting of vehicle weights, and, as a result,
the APWCS system was developed.

55

SYSTEM OBJECTIVES

The primary objectives of the APWCS system are as follows:

Develop a common system for all engineering offices

Utilize the latest technology to assure ease of use

Design a system to assist engineers and management in satisfying
unanticipated daily weight information requirements

INFORMATION FLOW

The different organizations within Ford Motor Company participating in
the APWCS system are shown in figure 1. The information flow associated with
the APWCS system is summarized in figure 2. The various steps associated with
a weight control proposal are as follows:

Review current parts lists and assumptions

Create weight control proposal

Input to computer system

Recognition of proposal

On-line search thru computer system

Vehicle Office action

Regular periodic reporting

Track progress towards targets

Create part-level detail

Part-level verification reporting

SYSTEM DESCRIPTION

The APWCS system has been designed to provide improved control and re-
porting of weight reduction actions. The system is implemented on the Honeywell
6080 GCOS computer. Video display terminals are used to input and update pro-
posals. Powerful search features allow the user to define search criteria on-
line and obtain the results on the video terminal or on remote printing terminals.

56

Figure 3 shows a video display screen of the APWCS system which is used to
' update and control weight proposals.

Many aspects of Programmer Productivity Techniques were used during the
system development to ensure-a sound, good design. The APWCS system has been
designed to. allow the user at the terminal tc interact with the system very
effectively without having to know the characteristics of the computer system.
The user can be trained to use the systemTin as little as one hour.

Data integrity of the system is ensured by imposing security on the data
fields so that updating of data,is restricted to authorized users, while inquiry
of data alone may be allowed for other users. User authorization can be
dynamically changed when required so that the security of the system is main-
tained at all times.

IMPLEMENTATION STRATEGY

The system implementation has been subdivided into five basic phases:

Phase 1 (implemented October 1977)
Allows design responsible activity to store, retrieve, evaluate and
obtain status of weight control proposals. It also allows each acti-
vity to monitor weight proposals affecting it

Phase 2 (targeted July 1978)
Provides the ability to measure progress and determine shortfalls
for each carline, body style, engine and transmission combination

Phase 3 ---
Permits users to store information for parts affected by a proposal

Phase 4
Allows transfer of information about parts affected by approved
proposals to a common part level system

Phase 5
Provides interface to the Corporate Fuel Economy System to enable
computation of weight related average fuel economy effects

SYSTEMS FEATURES

The APWCS system provides many important features, some. of which are
mentioned below:

Phase 1

Serves as a central collection source for all advanced weight control
proposals and related information

57

Allows the design responsible activity to identify, evaluate and
select the best weight control proposals

Provides sufficient flexibility to each user to satisfy local
needs

Provides printing of standard reports run at regular frequencies
as well as ad hoc reports at the user's remote printing terminal

Permits retrieval of historical information

Provides unlimited on-line inquiry and ability to review any
weight control proposal regardless of originating or design
responsible unit

Provides computer-generated ranking of proposals

Phase 2

Computes and reports shortfall/cushion by model year for all valid
configurations of carline, body style, engine and transmission

Management summary of progress towards objectives of weight program
by carline and model year. The summary may be, obtained at the vehicle
level or the PEO level

Automatic recalculation of shortfalls/cushions and progress whenever
changes occur in weight control proposals or cycle plans

The APWCS system serves as an up-to-date control source for all advanced
weight control proposals and allows users easy access to any subset of these
proposals in order to aid in selection of the best weight reduction oppor-
tunities. All proposals that are approved are monitored thru design level
release. The system provides forecasts of vehicle weights for advance model
years and reports deviation from inertia weight targets.

INQUIRY AND REPORTING STRATEGY

Powerful inquiry (search) features are available to the user of the APWCS
system. The search features include exact value search, and/or/not search,
greater than/less than search, and context search. The results of searches/sub-
searches can be stored when required, and reports can be requested immediately
or at a later time. The selection, sort and page break requirements can be
changed dynamically when requesting a report.

The APWCS system produces many reports, some of which are mentioned
below:

Proposal Summary Report

58

Inertia Weight Plan

Opportunity Risk Report

Weight Program Status Report

A total of 45 unique reports are generated to satisfy specific require-
ments of each engineering off,ice.

SYSTEM BENEFITS

The APWCS system provides many benefits to the weight reduction program
as mentioned below:

Allows selection of optimum mix of weight reduction actions to
achieve the Company's vehicle targets at minimum cost

Provides a cross fertilization of ideas among engineers in Car -
Engineering

Allows faster adjustments to new program changes and the cycle plan
and provides earlier warning of shortfalls, permitting actions which
require longer lead times

Allows projections on volume changes on existing and new materials,
manufacturing processes and sourcing

Assists Vehicle Engineering in evaluating several hundred proposals
to obtain the optimum programs from a cost and confidence viewpoint

Provides Product Planners information for downsizing opportunities
based on latest cycle plan weight status

Gives more accurate forecasts of advanced model vehicle weights,
thereby permitting a reduction in the reserve weight and allowing
more accurate forecasts of Corporate Average Fuel Economy (CAFE).
The penalties for not meeting CAFE are $5 per vehicle for every 0.04
kg/l (0.10 mpg) below the mandated standard times total model year
production

Results in greater productivity from existing personnel and will
avoid the cost of increased personnel requirements

Permits tracking of weight reduction actions from inception to
eventual production

59

DISCUSSION

Phase 1 of APWCS system has been implemented and Phase 2 is currently
under implementation. Experience to date has shown the APWCS system to be an
extremely effective tool in controlling the vehicle weight program at Ford
Motor Company. The projected annus.lized savings due to the APWCS system is
over $2.5 million.

60

Figure l.- Participating organizations.

ORIGINATE
WEIGHT
PROPOSALS

BODY
ENGINE CRT

TRANSM.
CHASSIS

MATL. PLNG.
OTHERS I

EVALUATE PROPOSALS
APPROVE ADD’L STUDY
APPROVE FOR PROGRAM fiDT

APWCS
DATA
BASE

“AD HOC”
INQUIRY

RECURRING

IWC REPORTS

ALL
ENGINEERING

OFFICES

Figure 2.- Information flow.

I \

Figure 3.- Video display (CRT) screen.

1, ‘. ‘.. ; . ,* ,. ’ ,

8
A DATA MANAGEMENT SYSTEM FOR

WEIGHT CONTROL AND DESIGN-TO-COST

Jerry C. Bryant
Bell Helicopter, Textron

SUMMARY

.The definition of the mass properties data of aircraft has
been demonstrated to change on a daily basis as do the design
details of the aircraft. This dynamic nature of the definition
has generally encouraged those responsible for the data to update
the data on a weekly or monthly basis. This decision resulted
primarily from an economic standpoint since regeneration of all
weights reports on a daily basis would be expensive. The by-
product of these infrequent updates was the requirement of manual
records to maintain daily activity.

The development of WAVES at Bell Helicopter Textron has
changed the approach to management of the mass properties data.
WAVES has given the ability to update the data on a daily basis
thereby eliminating the need for manual records. WAVES has
demonstrated that the IMS software product can support a data
management system for engineering data.

INTRODUCTION

Bell Helicopter Textron has designed and developed a data
management system to support Weight Engineering and Value Engi-
neering using the Information Management System, IMS, software
product of IBM. The Weight And Value Engineering System, WAVES,
has been in production use since December, 1977. WAVES initially
was used concurrently with Bell's previous system in order to gain
confidence in WAVES reliability. After a few months, WAVES became
the production system.

PREVIOUS WEIGHTS RECORD-KEEPING SYSTEM

The previous system was initially designed in 1960 for the
purpose of recording the weight and center-of-gravity (c.g.) for
the HU-1D (Huey) helicopter for the U.S. Army. The system was a
state-of-the-art design and processed in the batch mode. It pro-
cessed a two-card record that recorded basic information such as

65

the part number, weight, next assembly, and center-of-gravity.
More helicopter models were added and enhancements to the system
design were made throughout the years. The system had reporting
capabilities much the same as other weights systems. Weight was
reported by part number, by design group responsibility and per
applicable military standards.

As was typical with all batch weights record-keeping systems,
update of those files containing part weights occurred with a
frequency of from one week to six weeks. The resolution of dis-
crepancies between reports generally prevented an update frequency
of less than one week. The unfortunate byproduct of this lengthy
update cycle was that a manual set of records was required for the
remainder of the time until the next update. The computer was
used for calculations about once a month. Computer generated
reports of the mass properties were prepared about once a month.
All weight changes were marked on these reports until the next
file update when new reports were generated. In order to keep the
information current, a change log was required. Change logs were
maintained so that assembly weights and helicopter weights could
be recalculated when required. Depending upon the amount of
change activity, a calculation of an assembly weight might require
several days to derive. The manual records required were expen-
sive to maintain. This use of the weight engineer's time kept him
from spending his talent on the weight control effort.

By the 1970's, Bell's business environment had changed such
that the system no longer met the company's needs. Bell's pro-
duct line had grown such that maintenance of the weights data was'
no small task. A change in the weight of a part used on more than
one model might require the update of several files and several
sets of manual records. Additionally, the military requirements
for data reporting had become more stringent. Generally, more
data substantiation was required in a shorter period of time.
During the 1970's, the Design-To-Cost information was added to the
weight's files in order to support Value Engineering. All of
these factors rendered the system error-prone and time consuming.
The system had become unresponsive to the company's needs. At
times, the weights engineer wondered if he worked for the computer
rather than the computer working for him.

SYSTEM STUDY AND PRELIMINARY SYSTEM DESIGN

In order to identify a weights system that would meet the
company's current and future needs, a system study was initiated.
The study lasted for a period of three months and included per-
sonnel from Weights Engineering and from Scientific and Technical
Computing. The inefficiency of the previous system plus the
difficulty of maintaining the weights data for all the company's
products demonstrated the need for improved data management. The

.
66

/objective of eliminating the manual records required an improved
'-approach to data management.

Much of the same data normally included in a bill-of-material
file was in the weights data file, along with the mass properties.
It was recognized that a relatively small number of people were
maintaining the bill-of-material of a helicopter during the
development phase. The calculation and the assignment of mass
properties was also required. Too little time remained for weight
control activities.

An evaluation was made of the company's needs for the weights
information. It was determined that on occasion, a non-engineer-
ing department might have a data request, but the primary needs
came from within engineering. The primary need was that of
determining the helicopter weight and center-of-gravity for all
flight conditions, in order to insure a product that met the
performance objectives with suitable handling qualities. This
assured that a marketable product was developed. As with many
engineering disciplines, the weight was at times compromised in
favor of other attributes such as cost, strength, reliability and
maintainability, making weight a constant concern. In order
to manage the weight and balance (center-of-gravity), several
different report types were needed to detect the exact areas for
improvement. Also, the moments-of-inertia were required for
analysis of handling qualities. The handling qualities of the
helicopter were analyzed for various flight conditions and the
performance of subsystems was evaluated. NASTFLANe was in use at
Bell for the finite element analysis. The weight and location of
each part was included in the analysis in order to determine the
structural integrity of the helicopter. Not only were the weights
data being used for control of the weight and balance, but also
the data were used for other engineering analysis.

After determining the types of improvements needed and
determining the data requirements, a preliminary design was pre-
pared. Several trade studies were made to determine the best
system design to support the company's needs. A summary of the
trade studies is found in Table I.

The first option for a new system was the acquisition of a
system from another aerospace company. Most of the companies con-
tacted had about the same type of system as Bell. No system was
found that met Bell's needs.

Several other options were considered. An upgrade of Bell's
current batch system was considered, but was found to meet only a
few of the objectives. Data management system designs using
utility features were considered, but were determined to be fairly
expensive and a relatively high risk. The approach that was
ultimately chosen was the use of a commercially available data
management system. Several were considered, but the Information

.I 67

Management.System of IBM was chosen primarily due to its proven
history and availability at Bell.

A recommendation of a data management system with online
capabilities was made to management. The recommendation included
a preliminary design, an estimation of resource requirements, the
system capabilities required and the anticipated benefits.
Management approved the development and implementation schedule
on 1 March, 1977.

WAVES DEVELOPMENT

Project Organization

The project commenced on l.March, 1977, using personnel from
Weights Engineering, Scientific and Technical Computing, and Data
Base Administration, and was to have concluded on 1 March, 1978.
The schedule was revised for a 31 December, 1977 completion in
order to support new helicopter developments.

The Weights Engineering Group defined the system requirements
while Scientific and Technical Computing prepared the system
design and program logic definitions. All programs were developed
by Scientific and Technical Computing using the PL/I language.
The Data Base Administration Group reviewed the system design and
executed those tasks needed for administration of the design. IBM
personnel assisted in review of system design and application pro-
gram design.

System Design and Development

The system was designed and developed within a six month
period. Additional features and additional applications were
added during the last four months.

This initial phase of WAVES provided a data management system
that met all the objectives set forth in the system study. The
system included the data management features and the online cap-
abilities required. All the reports originally planned had been
developed as well.

At the time a recommendation was made to management, add-
itional features were envisioned but were recommended to be de-
layed until the completion of the initial system. The initial
development allowed these enhancements to be developed.

System Enhancements

Enhancements to WAVES were planned for the time period
following the initial development. Some of the major features

68

planned were: Value Engineering'implementation, improved prelim-
inary design tools, online entry/update, computer;augmented design
interface, improved finite element analysis interface and engi-
neering bill-of-material'data base interface. . : ,'

:

WAVESNETWORK DESCRIPTION

WAVES is implemented by using release 1.1.4 of IMS and the
data are stored on IBM 3350 disk packs. It runs on an IBM 370
model 168 with 5 megabytes' of storage; The design standard re-
quired that an online transaction receive a response within three
seconds. The online system is supported by an IBM 3270 video dis-
play with an IBM 3286 printer, both of which are located within
the Weights Group.

Online System

The online system is the primary feature of WAVES. This
system is available during first shift hours and reduces the need
for batch reports. Online inquiry eliminates the need for manual
records. The video terminal and the printer located within the
Weights Group allow inquiry, data entry, and report generation.

The primary inquiry method is via assembly part number. The
assembly inquiry capability allows retrieval of the weight and
c.g. for the helicopter top drawing. Information about the
assembly and its components may be displayed and/or printed at
the terminal.

Another inquiry method is by function codes as defined by
Military Standard Number 1374. This inquiry method returns the
mass properties of the function and all the detail parts necessary
to provide for this function. For example, an inquiry may be made
of a landing gear strut function. The weight and,c.g. of the
strut is reported, and all the detail parts of the strut are shown
with the weight and c.g. of each part listed.

An inquiry for the history of changes to a helicopter model
is available. This inquiry provides any one of several sets of
data denoting the parts affected by authority of an engineering
change notice number. Delta weight and balance changes are given
along with other pertinent information. In addition, any changes
that are pending may be requested. A printed report of the
inquiry is optional.

The online system also supports update and data entry. Up-
date of the descriptive nomenclature of the functional codes and
update of a table of standard codes can be accomplished. Valid
engineering change codes are entered from the video along with a
short description of.the engineering change. 'This code is used

69

to relate all parts affected by the engineering change. The part
number data is not updated online, rather it is updated in batch
mode offshift. All inquiries are known to be effective the pre-
vious work day. The weights data continually changes with better
design definition. The part number data can be retrieved to the
video terminal, changed, and released to an intermediate data base
for offshift processing.

Batch System

The batch portion of WAVES supports the update of all WAVES
data bases and report generation from those data bases. Table II

I lists those jobs run in the batch mode along with a description.

The most significant batch job is the data base maintenance
job. This job reads input data from online and from keypunch,
error checks that data and passes the error free data to the
maintenance program. Those records passed receive additional
error checking and are then applied to the part number data base.
As the part number data base is updated, the appropriate changes
are made to the assembly data base, the functional code data base
and a history record is written to the history data base giving
part number, functional code and delta mass properties.

Those batch reports listed in Table II are generally
scheduled during offshift hours. Enhancements to IMS at Bell,
that are scheduled for 1978, will allow these reports to be gener-
ated during first shift as well.

WAVES Data Management Features

WAVES allows manual records to be discontinued. WAVES builds
the history data necessary to eliminate those records. Change
logs can now be discarded. WAVES also creates two data bases for
the user. The assembly total weights are calculated and retained,
and the weight of part functional groups per MIL-STD-1374 are cal-
culated and retained. The user prepares the weight and center-of-
gravity of all component parts and receives in return these data
plus all assembly weight totals, all functional code totals, and
the history of all changes.

In order to provide consistent data, WAVES insures that a
part has only one weight, regardless of the users actions. When
a part weight changes, that change is applied to all uses of that
part.

Another major management feature is error checking. All data
are processed through error checking logic to verify that the data
request is appropriate. Major errors cause the data to be re-
jected whereas errors of a minor nature are noted with a message.
Should an error occur that compromises the data management objec-
tives, the update process terminates and the effect of all update

70

activity is removed.

WAVES APPLICATION

General View

The WAVES system allows the assignment of mass properties
and functional codes to all component parts. WAVES in turn
generates this same information for all assemblies and provides
a summary of the data at any level within the drawing tree. Also,
the cost of any part or assembly may be added. Cost can be
assigned in as much detail as required to support the Design-To-
Cost effort. WAVES works for engineering to manage the data
required for weight control and for cost control.

WAVES Support of Weights Group

The Weights engineers find that they now have much more
visibility about the status of a helicopter model. Less effort is
required of the user since no manual records are required. WAVES
is designed to minimize the time required for record keeping.
Data entry is arranged by assembly in order to logically follow
the engineering drawings. WAVES features, such as automatic look-
up of part weight, save considerable man-hours. The weights engi-
neer now calculates fewer of the mass properties. WAVES cal-
culates total -weight, all moments, the inertia and the aggregrate
center-of-gravity for assemblies. WAVES includes extensive error
checking both in the preprocessor stage and in the maintenance
stage to verify the integrity of the data. This insures that the
data are consistent once they are added to the data base.

WAVES supports weight analysis and control of a helicopter
model beginning at the conceptual stage and continuing through
production. A conceptual description of a helicopter may be made
by use of functional group level data for load to the data base.
This group level data may be derived from assembly weights from
similar helicopter designs. This allows the creation of a model
on the data base by providing only a few records. These records
may be changed, expanded in description or deleted as necessary to
conduct trade studies. Another significant feature for prelimin-
ary design analysis is the "what-if" feature. This allows major
assemblies and subsystems to be gathered into a hybrid helicopter
model. This too requires only a few records.

Weights group support during the helicopter development phase
is very important. Trends of the weight and balance must be de-
tected early so design changes can be made before a design is
finalized. The effort of the weights engineer is reduced signif-
icantly by the use of features such as automatic calculations and
part weight look-up. Approximately 80,000 standard parts, such as

71

nuts, screws, and washers, are resident within WAVES to allow
that only the part number and its location be coded. The part
name, part weight and other information is retrieved from the
data base.

Weights support of a production helicopter model requires
'less effort. The volume of data is smaller and most design

changes require prior approval by a number of parties. This lead
time allows the changes to be added to a pending file. The effect
of the pending change will be included on a status report to
management. Management can review all the change requests and
make decisions based on the total impact to the helicopter's
weight and balance.

Many helicopters are delivered to customers with various
options. The buyer can order any combination of options such as
auto pilot, air conditioning, custom interior, float kits, and
special avionics. These various combinations require that the
weights engineer assist in the arrangement of the optional kits
in order to deliver a helicopter with acceptable weight and bal-
ance. WAVES aids in this effort by allowing that a helicopter
record be combined with kit records to determine an aggregate
weight and balance.

WAVES allows the weights engineer to support the record-
keeping function as a secondary task to weight control. The
weights data follow the flow of engineering design data and are
relatively easy to process. The weights engineer now has the
visibility that permits more effective weight control. WAVES is
responsive to engineering's weights data needs.

Management View

Many aircraft have been designed and manufactured with
weights record-keeping such as the previous system in use at Bell
and many have been designed and manufactured with no automated
weights system. However, management has learned to make better
use of the engineers' talents and to supplement those talents with
the computer. This trend has brought use of the computer for
finite element structural analysis, computer-augmented design,
aerodynamic analysis and other uses.

WAVES comforts management because they realize it is respon-
sive to the weight control effort. Management is pleased that
better use is made of both the weights engineer and of the com-
puter.

Technical View

WAVES is a data management system for the mass properties of
aircraft. The system includes online inquiry, update and entry
capabilities, and a batch portion which creates reports and

72

updates the data bases.

Part Number Inquiry

Inquiry of the weight by part number includes component
parts, assemblies and installations. A component part inquiry
returns information such as part weight, name, and moments-of-
inertia. A request for information about assemblies and install-
ations returns the assembly name, drawing and parts list revision
letters and all parts required for that assembly or installation.
For each of the parts, which may be details, component parts .or
assemblies, selected sets of information may be returned. The
same information as a component inquiry is returned plus infor-
mation such as quantity required, total weight, centers-of-gravity,
inertia, part location boundaries, weight confidence class, part
source code, functional code and cost center code. The total
weight of an assembly may be retrieved. Refer to Figures 1, 2,
and 3 for examples.

Functional Inquiry

An inquiry of the weight and centers-of-gravity of the func-
tion code as defined by MIL-STD-1374 is available. This standard
defines codes for functions such as power plant. The same code
gives the weight of the power plant of all models. Inquiry of the
code returns a description of the function and the total function
weight and the aggregrate c.g. A list of the parts that make up
that function with their weights and c.g.'s can also be retrieved.
This is a powerful data item for preliminary helicopter design
since functional groups can be assembled into a new helicopter
configuration. Refer to Figures 4 and 5.

History Inquiry

An inquiry of the changes made to a helicopter model is
available. Entry of the engineering change code returns any one
of several report formats, all of which include part number and
delta weight. Recommended changes that are pending are retained
within the same data base and can be retrieved in a similar
manner. Pending changes may be added, changed or deleted from the
video terminal. Refer to Figures 6, 7, 8, and 9.

Online Entry

Activity to update WAVES may be entered from the video
terminal. Inquiry of an existing assembly may be made, modified,
and sent to an activity file. For new parts, the inquiry step is
skipped. This feature allows that data be entered during first
shift but processed overnight. Data rejected by error checking
can then be placed back to the activity file for online correc-
tions the following day. Refer to Figure 10.

73

Online Update

The nomenclature that describes the function codes of
Military Standard Number 1374 can be updated online. Most of the
nomenclature requires no change from one model to the next. The
nomenclature that does require change, such as avionics function
codes, can be updated by using the inquiry program with an update
option.

WAVES uses a table of standard codes and values as a baseline
for error checking. In order to keep similar reports consistent
in reporting the same data, the table is also used to produce
nomenclature for codes such as material specification code. The
data are stored in a data base and can be updated online.
Generally, only those codes that are model dependent require up-
date.

Update of the part number data base requires a valid engi-
neering change code. That code must be entered online. Any
history of a part changed, added or deleted by the authority of
that code will then be related to the code in the History Data
Base. Any pending changes must also be entered online to the
History Data Base.

Batch System

The batch system is utilized during second and third shifts
for maintenance and report generation. By the fourth quarter of
1978, the IMS system at Bell will be changed to allow the reports
to be run concurrently with the online system.

Maintenance

Maintenance of the data bases is scheduled five nights a
week. Activity from the online system and from keypunch is merged
for application to the data bases. Additionally, twice a week,
copies are made of the data bases to provide back-up in the event
of hardware failure.

Reports

The primary batch report is the Drawing Tree Report that pro-
vides an indentured part number report from the top drawing of
the helicopter down to all details. This program also creates.
two tape files to be used for other reports. This program is
scheduled at the end of each week and is the back-up data source
should the online system be inoperative for extended lengths of
time.

All other batch reports, which are listed in Table I, are
scheduled on request to be run on second shift.

74

CONCLUDING REMARKS

WAVES has been a good investment. The weight control effort
at Bell has become more efficient and the cost control effort has
begun to open new horizons. The investment into WAVES was lower
than other data management systems for several reasons. The
personnel involved in the project had a thorough understanding of
engineering practices and particularly the principles of mass
properties. .Understanding the requirements and defining the
weights system posed a lesser challenge than the mechanics of
implementing the system. This reinforced the'argument for solving
engineering problems using personnel with an engineering back-
ground. Also, the power of the PL/I language and of the IMS
facilities greatly simplified the task.

Without question, IMS was the right choice for the WAVES
development. IMS was a proven product that offered low risk. The
data could not be profitably updated on a daily basis without the
online capabilities.

Experience with the WAVES data management system leads us to
foresee potential applications where large amounts of data must
be subjected to engineering analysis.

75

TABLE I

SYSTEM

1. EXISTING

.
2. IMPROVED BATCH

3. BELL DESIGN DATA MANAGEMENT

4. MODIFIED BELL RESEARCH DATA
MANAGEMENT

5. RELATIONAL, DBTG, CODASYL, . . .

6. PURCHASE EXISTING SYSTEM

7. ONLINE IMS

WAVES TRADE STUDIES

COMMENTS

INEFFICIENT

NO ONLINE, EXPENSIVE TO UPDATE DAILY

HIGH COST, HIGH RISK

HIGH RISK

LITTLE USE, NO BELL EXPERIENCE

EXPENSIVE, NOT ONLINE

PROVEN HISTORY, LOW RISK

TABLE II

WAVES BATCH PROGRAMS

P-ROGRAM PURPOSE

UPDATE RUN DAILY TO UPDATE ALL DATA BASES

DRAWING TREE INDENTURED PARTS LIST FROM TOP DRAWING DOWN,
GIVES WEIGHT, C.G., ETC. OF ALL PARTS AND
ASSEMBLIES

PART NUMBER GIVES USAGE OF ALL PARTS CURRENTLY USED

WEIGHT DISTRIBUTION DENSITY OF AIRCRAFT BY INCREMENT ALONG AXIS

FUNCTIONAL WEIGHT & FUNCTIONAL GROUP WEIGHT PER MIL-STD-1374
BALANCE INCLUDING PARTS FOR THAT GROUP

MOMENTS-OF-INERTIA MOMENTS-OF-INERTIA BY PARTS AND ASSEMBLIES
IN DRAWING TREE ORDER

WEIGHT BY MATERIAL WEIGHT BY SPECIFIC MATERIAL SPECIFICATION AND
BY GENERAL MATERIAL TYPE (BAR, SHEET, ETC.)

WEIGHT BY WORK WEIGHT AND C.G. OF ALL PARTS WITHIN A COST
BREAKDOWN STRUCTURE CENTER - ALSO, WEIGHT BY DESIGN GROUP

MIL-STD-1374 REPORTS DETAIL AND SUMMARY FUNCTIONAL WEIGHT

BELL STATUS CURRENT WEIGHT OF A HELICOPTER AND A REPORT
OF ALL CHANGES SINCE LAST REPORT. ALSO A
SUMMARY REPORT OF GROUP ENGINEER VERSUS
TARGET WEIGHT

77

TABLE III

WAVES ONLINE PROGRAMS

PROGRAM

P/N INQUIRY

PURPOSE.

INQUIRY OF COMPONENTS AND ASSEMBLIES. REPORTS
COMPONENT WEIGHT AND ASSEMBLY WEIGHT AND C.G.
ALSO, REPORTS CODES AND INERTIA DATA.

FUNCTIONAL INQUIRY INQUIRY OF FUNCTIONAL CODES GIVING WEIGHT
AND C.G. ALSO, THOSE PARTS SUPPORTING THAT
FUNCTION ARE REPORTED WITH THEIR WEIGHT AND
C.G.

HISTORY INQUIRY INQUIRY OF THOSE PARTS CHANGED BY AUTHORITY OF
AN ENGINEERING CHANGE CODE ALONG WITH THE
AMOUNT OF WEIGHT AND BALANCE CHANGE. ALSO CAN
INQUIRE OF PENDING CHANGES NOT YET INCORPORATED.

78

1;;: N I) 17 1:: ;q I..’ i:j t..j ;r; j:,:

Figure I.- Detail part inquiry.

Figure 2.- Assembly/details inquiry.

Figure 3.- Assembly weight and c.g.

Figure 4.- Functional code weight and c.g.

Figure 6.- History inquiry (weight and balance),

Figure 7.- History inquiry (next assembly and design group).

Figure 8.- History inquiry (function and cost codes).

Figure 9.- History inquiry (pending change).

Figure lO.- Online entry.

9

ASSOC

AP L/VAAM

IATIVE PROGRAMM

AND

I NG LANGUAGE

VIRTUAL ASSOCIATIVE ACCESS MANAGER

Carol Price
Manufacturing Development

General Motors Corporation

ABSTRACT

APL provides convenient associative data manipulation functions in a high
level language. Six statements were added to PL/I vla a preprocessor: CREATE,
INSERT, FIND, FOR EACH, REMOVE, and DELETE. They allow complete control of all
data base operations. During execution, data base management programs perform
the functions required to support the APL language.

VAAM is the data base management system designed to support the APL
1 anguage. APL/VAAM is used by CADANCE, an interactive graphic computer system
at General Motors. VAAM is designed to support heavily referenced files.
Unlike typical data management systems, no explicit I/O is done. Instead
virtual memory files, which utilize the paging mechanism of the operating
system, are used. VAAM supports a full network data structure. The two basic
blocks in a VAAM file are entities and sets. Entities are the basic information
element and correspond to PL/I based structures defined by the user. Sets
contain the relationship information and are implemented as arrays.

INTRODUCTION

APL (the Associative Programming Language) was first developed by General
Motors in 1966 to provide associative data manipulation functions in a high
1 eve) language.

Six statements were added to PL/I via a preprocessor: CREATE, INSERT,
FIND, FOR EACH, REMOVE, and DELETE. APL statements in a program are preprocessed
by a translator which generates calls to data base management programs.
During execution, data base management programs perform the functions required
to support the APL language.

Our data base management system was designed to support a computer graphics
system at General Motors called CADANCE (Computer Aided Design and Numerical
Control Effort). CADANCE is a highly interactive system. Its data base is

85

I

used both to define logical relationships in the data and to support our display
d image on a graphic console. Its major application is for automobile body

design which requires the ability to represent complex relationships between
data elements and to access large numbers,of these data elements in a highly
efficient manner.

General Motors wrote its first data base manager for APL in 1966, imple-
menting relationships as traditional linked lists (or rings). In 1977 a new
data base manager was written, implementing relationships as arrays. Its name
is VAAM (Virtual Associative Access Manager) and it supports an upgraded version
of the APL language. VAAM differs from other data base management systems in
several significant ways. It:

1. Utilizes virtual memory files -- the basic philosophy is to place an
entire data file in virtual memory. The only I/O is paging and is done by the
operating system. The internal organization of VAAM minimizes the number of
pages which must be referenced for various types of accesses.

2. Contains full network support -- the ability to relate any data item to
any other data item with connections automatically maintained in both directions.
Since list, tree, and hierarchial data structures are subsets of network data
structures, VAAM supports them all and allows them to be mixed as desired.

3. Supports a dynamic data structure -- the ability to add new relationships
or data types at any time without the need to modify or recompile existing
p rog rams. This is sometimes called logical data independence. Most sys terns
permit only predefined static relationships. (VAAM may requi re a data base
conversion under certain conditions.)

4. Contains a file reorganization feature -- the reorganization utility is
designed to provide automatic tuning of the VAAM data base manager on a file by
file basis. It basically does a sort and merge on the data file based on
advice given by the application and on statistics gathered during execution.
It clusters together data that will be referenced together, eliminates unused
space blocks, and calculates and stores statistics on the profile of data
structures in the file.

5. Is not a transaction driven system -- it does not provide for concurrent
updating, automatic recovery, rollback, or sophisticated security techniques.

VIRTUAL MEMORY FILES

Data access and permanent storage in VAAM is accomplished using virtual
memory files.

Today many data base managers run on virtual memory systems. Virtual
memory provides each user with an address space that exceeds the size of real
memory . This space can be treated as if it were real memory and the operating

86

system handles the problem of managing the contents of real memory for all
users on the system.

The addition of virtual memory (Fig. 1) introduces a new level of l/O under
,the control, of the operating system -- paging. Virtual memory is divided into
fixed length blocks called pages. The operating system supervises the transfer
of virtual memory pages between real memory and temporary paging storage.

VIRTUAL MFMnRv

.

FIGURE 1

REAL MEMORY

Virtual memory is more than a large address space. It is in fact an
implicit I/O mechanism and provides the basis for virtual memory files.

87

The basic philosophy of virtual memory files is that the entire file is
addressable in virtual memory, and all access is by demand paging (Fig. 2). The
external data set is simply a group of page-sized records with unknown content.
To access a particular data item in a file, all that is required is a reference to
its virtual memory address. The paging mechanism of the operating system will
then bring the required page into real memory. If a page is modified while in
real memory, a temporary copy of the page is created when it is removed from
real memory by the operating system.

VIRTUAL MEMORY FILE 110

I I
I
I

1 APPLICATION i
I PROGRAM

I
I I f

I
I I I

PERMANENT i
/ VIRTUAL FILE I 1 i

I
i

I
VIRTUAL

i
STORAGE>

I

I I ASSOCIATIVE,
ACCESS

PAGES
I

~MANAGER

I I I
---_----

I

-__-I

I SUPPORT FUNCTIONS: I
NEWFILE

I
i

[)
I i
I VIRTUAL,

MAPIN
.

I MEMORY,

I I SAVE

UNMAP

FIGURE 2

SUPPORT FUNCTIONS

Support for virtual memory files was added to IBM's TSS and MVS operating
systems by GM Research. There are four support functions: NEWFILE, MAPIN,
SAVE, and UNMAP.

NEWFILE - Creates new virtual memory files. It reserves an initial amount
of virtual memory space for a file. Additional space can be delegated dynami-
cal ly as required. The file exists only in virtual memory until it is saved.
This avoids the need to catalog and delete temporary files.

88

i
P

IC

MAPIN - Places an external dataset in virtual memory. When a page is
modified, it is not written back to its permanent location but rather to tempor-
ary paging storage. The modified pages exist only in virtual memory until
SAVED.

SAVE - Updates the external dataset. All pages that have been changed or
are new are written into the external dataset.

UNMAP - Disconnects the file from virtual memory. This does not affect
the external file. Any changes made since the last SAVE will be lost.

APL - ENTITIES AND LINKS

ENTITIES

VA/VI data files can be looked on as an extension of the program space of
an application. The basic information element in a VAAM file is an entity
which corresponds to a PL/I based structure defined by the application. Program
access to entities is accomplished through pointers returned by VAAM functions.

Associated with each entity are attributes. Attributes are the data about
the entity (describing its properties) that the L:ser wants to manipulate with
PL/I statements in his program.

For example a POINT and a LINE might be defined as:

DCL 1 POINT BASED (PTR~),
2 (X,Y,Z) FLOAT DEC (16);

DCL 1 LINE BASED (PTR2),
2 TYPE FIXED BIN (31);

DCL (PTRl ,PTR2) POINTER;

These declares are defined in a master declare file and are inserted in
the PL/I program by the APL translator. Any valid declare for a PL/I BASED
structure is valid for an entity description with one restriction - only one
REFER option is allowed. That means VAAM supports variable length entities as
long as they vary in only one subscript.

An example of a variable length entity is:

DCL PTR3 POINTER;
DCL 1 TABLE BASED (PTR3),

2 LNG FIXED BIN (311,
2 NUM ITEMS FIXED BIN (311,
2 TYPE CHAR (2) ,
2 ITEMS (M REFER (LNG)),

3 NAME CHAR (lo),
3 COPYNAME CHAR (IO);

89

,
LINKS

Links connect entities to each other and represent relationships among the
entities. These links are manipulated by means of APL statements in a program
(which translate to calls to VAAM procedures).

A relationship between two entities is represented in the data base by a
link joining the two entities. The link has a direction, represented by the
direction of the arrow in Figure 3, and a name. The direction defines one of
the entities as an owner of the link (e.g. LINE in Figure 31, and the other as
a member (e.g. POINT’s B, C, and D in Figure 3). The link name indicates the
nature of the relationship, since entities may be related in a variety of ways.

LINE
A rl

B

FIGURE 3

VAAM supper.ts a full network data structure. Just as an owner entity may
be linked to multiple member entities (as in Figure 3)) a member may be linked
to multiple owner entities (as in Figure 4).

LINE
A rl

PT
POINT

B 0 C

FIGURE 4

90

LINE LINE
A E

POINT POINT POINT POINT
B C D F

I
FIGURE 5

NETWORK DATA STRUCTURE

A single entity may be related to several other entities by different
relationships (named links). For example, Figure 5 shows entity F owned by
entity E on the link named ‘PT’ and owned by entity G on the link named ‘VW’.

VIEW
G

VAAM supports a full network structure. The basic blocks utilized by VAAM
are entities and sets (Fig. 6). A set is the collection of all entities that
have the same relationship (that is a link with the same name and direction)
to some other entity. The single entity to which the others are related is
called the root of the set. The entities in the set are called its participants.

The network can be traversed in either direction using location functions.
From e.n entity it is possible to locate (FIND) MEMBER’s or OWNER’s via membersets
or ownersets.

The location functions and internal formats for OWNER and MEMBER relation-
ships are completely symmetrical in VAAM.

FIGURE 6

91

I _.

VAAM’S INTERNAL FORMAT

ENTITY

An entity block in VAAM consists of three things: a header, its attributes,
and its branches. Only the attribute section of the entity is seen by the
application program. The rest is handled by VAAM and is transparent to the
appl icat ion program. (See Fig. 7.)

BRANCHES

Branches are defined in the master declare file for each entity type. The
master declare file description determines the number and names of membersets
and ownersets for a particular entity type. When an entity is created, space
for the proper length branches is reserved.

There may be I-N ownersets and O-M member-sets. There is always one
ent i ty-set ownerset. Branches contain an array of locators to sets. Locators
may be null, locators to SETS, or locators to ENTITY BLOCKS (equivalent to a
set with one participant).

VAAM
HEADER

OWNERSETS {

MEMBERSETS {
ENTITY BLi

LOCATOR (1 WORD) CONTAINS:

NULL

OR OFFSET TO SET

OR OFFSET TO ENTITY

AND

BLOCK TYPE
:K

FIGURE 7

LOCATORS

Locators are similar to pointers in that they contain an address of a
block in a VAAM file. But while a pointer is the absolute address of the block
in virtual memory, a locator is the address of the block relative to the file
origin. Locators are invarient across stores, while pointers are dependent on
the location of the file in virtual memory. Locators can be converted to
pointers once a file is in virtual memory.

Locators are one word long and contain both a block address and a block
type.

92

SETS

A set is an ordered collection of entities. It’s pointed at only by its
root. It’s either a memberset or ownerset; i.e. its participants are either
MEMBERS or OWNERS on a named I ink. The root of a set is either an entity or
the fi le. VAAM supports one special kind of set, known as an entity-set, which
is global to the file. Entity-sets are accessed by name. Any entity may
belong to any number of entity-sets without definition in the master declare
file. A VAAM set block consists of two things: a VAAM header and attributes.
The primary attribute of a set is an array of locators to its participants.
(See Fig. 8.)

El
ENTITY

t

0 SET MEMBER/OWNER SET

Y--L

n
ENTITY

SET BLOCK

LOCATOR CONTAINS:

NULL

OR OFFSET TO ENTITY

AND

BLOCK TYPE

FIGURE 8
APL LANGUAGE - VAAM FUNCTIONS

VAAM provides functions to create and delete entities, to insert or remOve
entities in sets, and to locate entities either via sets or names. These
functions are accessed through the APL language. The APL language consists of
six statements: CREATE, DELETE, INSERT, REMOVE, FIND, and FOR EACH and some
miscellaneous functions.

CREATE

Creates entities in a virtual memory file. NEAR advice allows the applica-
tion code to tell VAAM what entities will be accessed together.

93

DELETE

Deletes entities in the virtual memory file. This also deletes all set
blocks associated with the entity. It will also under certain conditions
delete members in the membersets.

INSERT

Adds an entity to a memberset of an entity or to an entity set. It may be
positioned first, last, or before or after another ent.ity in the memberset.

REMOVE

Removes an entity from any memberset or entity set in which it participates.
REMOVE is the inverse of INSERT, but while INSERT establishes only one link
each time it is used, REMOVE may break a number of links at once.

FIND

The FIND statement locates a particular entity on a set. It has many
options most of which are independent. It al lows searching:

a> of an entity set, a single member - or ownerset, or all member - or owner-
sets of an entity.

b) forwards or backwards.

c> starting from any specific participant in the set.

d) for the first or nth entity.

e) for any type or a particular type of entity.

f) to satisfy an arbitrary Boolean condition.

9) to execute a given PL/I statement if no entity satisfying the conditions is
found.

Using special APL functions an entity may optionally be named and then
found directly by name, rather than via a set and the FIND statement. Entity
names pertain to and are unique for a particular file.

FOR EACH

The FOR EACH statement is essentia.1 ly a FIND statement
all the entities in the set meeting spec ified conditions.

in a loop, locating

94

.i r
APL FUNCT IONS

Miscellaneous APL functions support functions such as:

a) counting the number of participants in a set.

b) placing entities in clusters (same as NEAR of CREATE only done after
CREATE).

cl determining the existence of a set of a particular name for an entity
We.

d) changing the length of a variable length entity.

e) determining the entity-type cf a particular entity.

f) naming an entity.

9) locating an entity by name.

MULTIPLE FILES

VAAM allows an APL program to work with multiple files. In most APL
language statements the file to be operated on can be inferred from one of the
entity pointers given. If no entity pointer is input, the VAAM function operates
on the current file. The current file may be explicitly changed by the applica-
t ion program.

CURRENT ENTITY (or RECORD)

The APL language does not work on a current entity (or record) concept.
Each time a set is referenced the application program inputs the pointer to the
entity containing the set to be searched. The application program has complete
control of the number of entities it has pointers to at any one time.

EXAMPLE

The APL statements required to create the structure shown in Figure 3 are:

DCL (PTRA,PTRB,PTRC,PTRD) ENTITY-POINTER;
DCL (LINE,P~INT) ENTITY-TYPE;

CREATE LINE CALLED PTRA;
CREATE POINT CALLED PTRB;
CREATE POINT CALLED PTRC;
CREATE POINT CALLED PTRD;

95

INSERT PTRB ON PTRA - ‘PT’ ;
INSERT PTRC ON PTRA -‘PT’;
INSERT PTRD ON PTRA -‘PT’;

PTRA -LINE.TYPE=l;
.

Some sample FIND statements to locate entities in the data structures
pictured in FIGURES 4 & 5 are:

IN FIGURE 5, given PTRE is zn entity pointer to LINE E, then one could
find G by:

FIND OWNER PTRG = VIEW ON PTRE - ‘VW’ ;

and F by

FIND MEMBER PTRF=POINT ON PTRE -‘f’T’;

IN FIGURE 4, given PTRA is an entity pointer to LINE A, then one could
find C by:

FIND MEMBER PTRC = (2) ENTITY ON PTRA -‘PT’;
or if PTRB is an entity pointer to B, then

FIND MEMBER PTRC = ENTITY ON PTRA -‘PT’ FROM PTRB;

PERFORMANCE CONSIDERATIONS

The most important performance consideration for a data base manager
utilizing virtual memory files is to keep paging at a minimum. VAAM attempts
to do this in several ways by -

1. Keeping the amount of overhead concerned with relationships in a file at a
minimum, thus keeping the size of the files as small as possible.

2. Using set blocks - which contain arrays of locators to participants in
sets. This allows most FIND’s to be done by referencing the SET block, without
referencing the other participants in the set (as required by 1 inked 1 ists).

3. Having only one block pointing to any one set block. This keeps updating to
a minlmum when the set block expands and moves. Also statistics are gathered
on a “1 ikely” size for the initial allocation of the set in order to keep the
number of expansions at a minimum.

4. Providing the ability to cluster together blocks that will be referenced
together. Clustering is done both at CREATE time and later during file reorgan-
ization.

5. Providing the reorganization utility (REORG) - this not only puts clusters
together, but it eliminates fiie fragmentation caused by deletes, and collects
statistics about set sizes and cluster sizes in the file. REORG allows VAAM to
tune itself, on a file by file basis, based on the profile of the file itself.

BIBLIOGRAPHY

The APL/VAAM User’s Manual. GM Manufacturing Development Publication. April,
1978.

WARN, D. R. VDAM - A Virtual Data Access Manager for Computer Aided Design.
GM Research Pub1 icat ion.’ GMR-1899, September, 1975.

97

10
THE AEROSPACE VEHICLE INTERACTIVE DESIGN (AVID) DATA BASE

Alan W. Wilhite
NASA Langley Research Center

Paper not submitted for publication

99

PANEL DISCUSSION - SESSION II

SESSION CHAIRMAN:

Richard Brice, The George Washington University

PANELISTS:

G. T. Derwa, Ford Motor Company
Jerry Bryant, Bell Helicopter Textron
Carol Price, General Motors Corporation
Alan Wilhite, NASA Langley Research Center

PARTICIPANTS:

Walt Braithwaite,. The Boeing Canpany
Bob Reynolds, General Dynamics Convair Division
Susan Voigt, NASA Langley Research Center
Jim Johnson, Wright-Patterson Air Force Base
Dick Lopatka, Pratt and Whitney Aircraft
Stig Wahlstrom, Boeing Commercial Airplane Company
Steve Fenves, Carnegie-Mellon University
Jim Browne, University of Texas
Don Fairhead, David Taylor Naval Ship Research and Development Center
Dennis Comfort, Boeing Computer Services Company
Bob Fulton, NASA Langley Research Center
Tom Corin, David Taylor Naval Ship Research and Development Center
Olaf Storaasli, NASA Langley Research Center
Roy Jenne, National Center for Atmospheric Research
Alex Buchmann, University of Texas

11

101

Rich
Brice

Unidentified
questioner

Alan
Wilhite

Rich
Brice

Walt
Braithwaite

Alan
Wilhite

Rich
Brice

Bob
Reynolds

PAWED DISCUSSION - SESSION II

I will try to alternate taking questions from those people
sitting at the tables with the built-in mikes and those people
sitting at the back that require the hand-held mikes. So if
you ladies with the hand-held mikes will pick out someone from
the back when they raise their hand and go stand beside them,
then we will soon be ready for their questions.

Why don't we start by raising those questions that deal
directly with what these particular panelists discussed and
then after that has run out maybe we can talk about some of the
issues that carried over from this morning.

For Alan Wilhite, are you planning on incorporating the
IPAD data base with your system?

Our system is quite smaller than what IPAD is envisioning
and no, we really don't.

Has anyone at the back got a question yet? Okay. Someone
else had a hand up over here. Okay, Walt.

Yes, I have a question for Alan again. You had a slide
which is not reflected in the material here which showed the
minicomputer interfaced to the host. You didn't say much about
that interface and I am curious as to what it is like and how
does it look to the user from a point of view of doing the
large analysis on the host.

Okay, what we have is a UT200 protocol to the CDC machine
which is actually a batch process. What the user does, he exe-
cutes an AVID procedure and shifts an input file to the host
computer and the host computer grinds on that program and shifts
back the information. Every time that you execute another pro-
gram within the AVID procedure, it checks to see what programs
have been executed on the mainframe computer. If it has
finished, it is acknowledged to the user; the user can check
the data, graphical or an editor type form, and then he can
update the data base with that information.

Okay, Bob.

For Miss Price, . . . (question inaudible)

and what caught my ear was your ability to cut down your disk
I/O activity by virtue of having it out of the disk and I wonder
(for some reason I wasn't quite able to follow completely) how
you managed to do that relative to the conventional system.
You just replaced the I/O buffer function with your virtual
memory file function. I wonder if you would spend just a

103

Carol
Price

Bob
Reynolds

Carol
Price

Bob
Reynolds

Carol
Price

Bob
Reynolds

Carol
Price

Bob
Reynolds

Carol
Price

Sue
Voigt

Ted
Derwa

Rich
Brice

Ted
Derwa

couple more minutes talking about exactly how you did that and
what's involved there.

I am not sure of the question. We do not do a read and
a write to the data base. Is that what you are referencing?

That's a start.

The file is put in the virtual memory and all I/O is done
by the operating system. There is obviously still I/O being
done by the operating system which is the paging in and out of
virtual memory, but there is no other I/O done.

(question inaudible)

Well, generally what's brought in is a record at a time
into the I/O buffer, right? Or a block? In a regular system?
We bring the whole file in.

(question inaudible)

You can look at it that way. If you want to bring your
whole file into virtual memory, right? Your whole file is
brought in.

(question inaudible)

Well, we are working in virtual memory.

Ted Derwa, did you ever say what system you were building
your APWAC system on, or if it is independent of any system?
Or is it separately built just special?

We are using 46080 GCO processors. We designed our own
data base, and we have also designed our own tube software to
provide that interface that we showed you. We are presently
investigating a MULTIX configuration and a relational data base
capability.

Excuse me, is the relational capability one that is being
supplied by a vendor that would come with the MULTIX system,
or is this something being provided by the MULTIX with the
MULTIX operating system by the builders of that?

It is provided with the MDLTIX system and we are taking
a look at it to see if there is anything we can do to make it
more applicable to our needs.

104

Unidentified
questioner

Ted
Derwa

Rich
Brice

Jim
Johnson

Jerry
Bryant

Jim
Johnson

Jerry
Bryant

Again for Mr. Derwa, did you investigate IMS for that
application, and why was the trade-off made that way if you did?

We did look at IMS. The problem we have right now is we
are locked into a Honeywell configuration (maybe "locked in"
is not appropriate) but after our evaluation, we feel that the
MULTIX configuration not only offers potentially a good data
base capability, but it also offers us the capability to use
the MULTIX system as a front end system where we can do net-
working to IBM type of equipment and also other equipment that
we have, such as a CDC and DEC systems. So this is our ultimate
plan - to try to use the MULTIX system as a front end system
for the users to provide a good easy-to-use interface and also
to use it as a networking system with the other capabilities
or hardware capabilities that we have.

I would remind those of you at the back again that if you
have questions just to attract the attention of one of the
young ladies with a mike and she will be right over.

I have a question for Jerry Bryant. On your WAVES pro-
gram, typical questions about engineering, you are able to get
a complete detailed parts listing and weight. Do you also
carry along the cost, detailed parts cost?

Well, we haven't really loaded any cost data yet, but the
answer is yes, we can. With our philosophy of managing the
data, our maintenance program saves totals, saves the total
weight of the helicopter for instance. It will similarly save
total cost of the helicopter and will be able to access that
with a single transaction.

Maybe to save you some redesign later on, there was a DOD
directive, maybe 3 or 4 years ago, saying that you will change
a cost methodology for all of your parts and you will carry a
detailed parts costing along with you when you are doing any
military system development, and that's a good time to put it
in.

Well, that is in fact what we are doing. At the design
time we are evaluating cost at the appropriate level. We
wouldn't concern ourselves too much with the cost of screws and
washers, but we can account for the cost at whatever level we
wish, at a system level, installation, major subassembly, what-
ever, and we will have within the data base the cost of all
those items that are coded and the totals of all those costs
at the ship level as well.

105

Dick
Lopatka

Jerry
Bryant

Dick
Lopatka

Jerry
Bryant

Rich
Brice

Stig
Wahlstrom

Carol
Price

Another question for Jerry. He mentions in his slides
that you are pursuing a NASTRAN' link improvement, I suppose
IMS and a CADAM link. Could you describe briefly what kinds
of links you are talking about. I assume IMS, and how are you
going to go about making those two things coexist?

Are you talking NASTRAN and weights or CADAM and weights?

I'd like to hear your comments on both NASTRAN and CADAM
in relation to IMS.

Well, they don't generally. We have had a link from our
mass properties to NASTRAN for a number of years. Unfortu-
nately, it involves the interception of the structures engineer
to determine what mass properties he needs to consider in his
data case. We have made that more automatic with WAVES in that
he can exclude entire assemblies, he can exclude parts within
a certain location in a helicopter and so forth. What specifi-
cally we do is that IMS creates an OS file for NASTRAN prepro-
cessing. In CADAM we have not (we have had CADAM for about a
year) yet done much about that interface. We keep hearing that
CADAM can calculate mass properties. There is an economical
consideration there: do you have the design engineer calculate
the weight as he designs the part, or do you have the weight
engineer schedule himself for a terminal time, recall parts
that have been designed, and then calculate the weight. But
we think CADAM has some capability. We are not sure how
feasible it is to use. We realize that there is a design
activity there and we or those people in the weights group need
to know what is going on there so that they can make their
inputs for the optimum design. So we have at least that link
with CADAM.

I wonder if there are any other CADAM, IMS experts in the
audience who would care to comment on this interface question?
Okay, Stig, I believe you had a question.

Thank you. I'd like to ask Carol Price on the VAAM presen-
tation here. First of all it was said that the internal struc-
ture in the base structure within the pages in the individual
application programs would care for themselves, or they could
use whatever they wanted to, I think you said.

I'm sorry, would you repeat that, you speak too fast.

'NASTRAN: Registered trademark of the National Aeronautics and Space
Administration.

106

Stig
Wahlstran

\

I think that you said that the base structure that you
had within the file, or something that the individual program
was responsible for and had the only knowledge about, the data
management system in fact did not. But that's not really the
question. The question is that in your examples and figures 11,
12 and so on, you are using something that looks like geometry
.examples where you have something that can be construed to be
the simplest element in the current anticipated ANSI1 standard
of geometry which is an associated kind of structure based upon
points as the only parameter. And I want to ask is there or
has there been implemented at General Motors some de facto
in-house standard for say bounded geometry that is using this
data management that you used to handle or to manage.

Carol
Price

Stig
Wahlstrom

Carol
Price

Stig
Wahlstrom

Rich
Brice

Steve
Fenves

Carol
Price

Steve
Fenves

Carol
Price

Steve
Fenves

Our application of the automobile body design has surfacing
involved. I didn't shaw surfaces, but we have surfaces, Gordon
surfaces, parametric surfaces , and all sorts of things like that
in this application.

So that you have actually implemented an internal standard
for geometry with this data management system.

What is the internal standard? The application uses
surfacing. We have very many divisions using that, our design
staff, Buick, Olds use that application, but it doesn't apply
to other people that would be doing surfacing.

Thank you.

Okay, let's go to the back to one of the hand-held mikes.

Steve Fenves fran Carnegie-Mellon. I have two questions
to Carol Price. I realize the first one is heresy to set
theoretical purists. One of the reasons that you put things
into sets is because they may share common attributes. Have
you considered storing set attributes with the set, and if not,
how do you handle elements of a set that have many common
attributes?

Are you talking about things like SYSTEM R attributes as
such?

No, attributes the way you are using them. For example,
. . .?

We put various entity types in sets. We can cross entity
types with different attributes.

But have you considered storing some attributes as part
of the set itself?

107

Carol -
Price

No. The sets are purely arrays and that's all we have
really used for our geometric types of relationships.

Steve
Fenves

My second question is on your last slide. You say only
one block points to a set block. I don't quite understand that.
I understood from an earlier slide that every member and every
owner points into a set block.

Carol
Price

If I am at a particular set block it has a root. For
instance, the line in the first example, the line has a PT set
which has 3 participants as members that point B, C, and D?
Okay, the set is owned by the line and that is the root of the
set. Now it has participants, but that is the only thing the
set block points to. Now the point has PT sets of owners, and
that's a different set. Okay? When I change a set by putting
a new participant in ,it? That isn't a ray if the ray is not
necessarily the length of the number of participants in it at
that time. There could be some free space there. I will enter
a new participant into the set if the set is full, then it has
to expand.

Steve
Fenves

Carol
Price

Steve
Fenves

Carol
Price

Rich
Brice

Jim I'm Jim Browne from Texas and the question I would like
Browne to raise is an engineering question.

(question inaudible)

The set does, none of theaparticipants do. The set would
be a new block in the data record which the root now has a point
to, but that's the only thing.

(question inaudible)

Yes, the set has locators to the participants which are
offsets to the blocks of those members. That doesn't change.

Let me encourage everyone to try to use the mikes so that
everybody can hear what we are talking about. Okay, we have
a hand-held mike question back over in the corner.

(sentences inaudible)
I have a question for Alan and Carol. By dynamic structuring
do you mean that you have a rapid update rate; that you can
change the content and format of a record or an entity on the
fly or that new structural relationships are required at exe-
cution time as opposed to the characteristic situation in busi-
ness data processing where you have a fixed scheme, or any of
the above. In other words, what does dynamic mean to you in
your context?

108

I

Alan
Wilhite

Carol
Price

Well, Jim, to me it means that if for business applica-
tions you usually have a fixed set with names, addresses, and
so forth, in an engineering data base the way we approach it
you might do a particular vehicle design and have various items
stored in a hierarchical type structure. Now if you go to
another type design, you might have another canponent and that
adds another leaf to the tree or whatever. It should be able
to take that addition dynamically; it should be able to easily
change the data base and that's what I mean by dynamics.

Our definition is basically the same. We can dynamically
add new entity types into the system. Stig, maybe that gets
back to your question. The users do define the entity types
in the system. They enter these declares or PLM based struc-
tures into the system. Dynamically that does not change any
of our codes. As new ones are defined, they can be entered
into the same data base and referenced. What is fixed is the
relationships, the names of the sets I should say, that are
defined with an entity type such as a PT set or VW set. Those
are defined with entity type; they stay fixed, but what can be
put on those sets is dynamic and is up to the application.
There is no knowledge or no requirement by the data base for
what those are, so if a new entity type is defined, it can be
added into the data base and put on an existing set of an
existing entity with no change to anything except the new pro-
gram that will go find that and use it.

Rich
Brice

Okay, I think someone is coming with a mike.

Don
Fairhead

I have a question concerning dynamics which was just
mentioned. When you say dynamic, do you mean at execution
time of a program? Maybe I am directing this toward Carol.
I am a little confused about the concept of what is dynamic
when you have this preprocessor and you have to compile a
program and you are talking about dynamic adding of entities?

Carol
Price

I guess I mean dynamic to application programs and to the
file that can be added in. Obviously at execution time. The
number of things on set is done at execution time. A line put
on a view or a line put on a surface or something like that is
dynamic, but the existence of a new entity type is an applica- .
tion program kind of thing.

Don
Fairhead

To continue a little bit, were any canparisons made between
the technique that you are using and the more standard (that's
showing bias) the other data base approach of say the management
like TOTAL or IDMS, were any comparisons made between your
approach and that approach, or is it even feasible to use, in
your opinion, something like TOTAL or IDMS for your application?

109

Carol
Price

Unidentified
questioner

Carol
Price

Jim
Browne

Carol
Price

Rich
Brice

Dennis

Jerry
Bryant

110

Yes, the comparisons were made. I’m sorry I don't have
that kind of information with me. General Motors Research, my
group, did not make that. They did it and it was done in about
1975 so that IlX3 was a very early design so everything that
exists today didn't exist then. But at that time in 1975 there
was nothing that would support the transaction rates that we
have; 128,000 transactions to a data base per hour per console
is mind-boggling to anybody from IMS, and I am not too familiar
with IDMS although it does support the types of relationships
we want better. Transaction rate is a basic problem. Maybe
that gets back to this other person's question on virtual memory
kinds of files to support the kind of transaction rates we have
and when you are just doing record I/O out to that data base
with each transaction, it doesn't support the interaction we
need with graphics.

How many terminals do you support?

Our system right now is running on a 168AP and is getting
bogged down at about 50. I have 8 million bytes. Well, I'd
say they are measured that high; they are not all doing that,
hopefully. I am not quite sure where that measurement came from
to tell the truth, but I am not sure that they are not all at
that kind of rate. Somebody else had a question?

. . . Are you saying that a dual processor 168 is boggling
down . . .

Basically we have 50 2250's doing this graphic application,
the design process. They take more power than a normal editor
kind of function.

Dennis.

I have a question for Jerry Bryant. In your presentation
you talked that you looked at other commercial systems and also
investigated the relational approach and I am interested as to
what the result was looking at systems; if you looked at
ADABASE, IDMS or SYSTEM 2000, and what were the results of
that and the relational analysis?

Our decision was pretty simple. IMS was in-house and that
gave it a significant advantage to us. That was really the
overriding concern. I mentioned the low confidence and lower
confidence and a system not in use at our canpany and total num-
ber of users not in that much use as compared to IMS. Really
that was the overriding concern. Relational certainly has a
lot of inviting concepts to it, but we were trying to make our
decision based on how to make a mOre canpetitive product and

Walt
Braithwaite

Carol
Price

Walt
Braithwaite

Carol
Price

Walt
Braithwaite

Dick
Lopatka

Carol
Price

Dick
Lopatka

we have a relatively small company, small staff, and to get
into implementing new data management systems within the company
would be quite expensive.

This is a possible two-part question to Carol. The manage-
ment portion of the system that you discuss, is it intended pri-
marily to address graphics systems that are driven frun say a
central host, or is it also intended to support the minicomputer
based systems that are used within the cunpany?

Do you mean VAAM as the management system? It is primarily
oriented toward graphic applications. The only one using it
right now has several applications on it, finite element modeling
besides just design, but it is purely for graphics use at this
time. There isn't anything in it that forces that, it's just
that nobody else has used it yet. Also, I think you can see
it is really down at the detail level of IPAD. It is not a file
management system. It does not have security and things like
that on top of it yet, although it could be put on top. It
could be put under some other data base management system that
had that sort of thing.

Okay, the second part of the question, well, the second
part of the first part of the question was was it intended to
complement the minicanputer based graphics systems that you cur-
rently utilize at GM, but since it is not a file management,
I guess not.

No.

Okay, that cancels the second half.

Another question for Carol. In the general category of
geometric modeling I see where you are using this, but how
encompassing do you go in terms of the definition here in terms
of analytical type support. One thing to do finite element
modeling and then have a file ready. Are you planning to get
into the actual canputations of finite element solutions or
aerodynamic characteristics or simulations? Do you see a need
for a data management system of a more general nature than geo-
metric modeling? And where does VAAM fit into that?

I guess I am not sure of the question. what do you mean
by more general?

Well, graphics is only one aspect of the entire design
process.

111

Carol
Price

Well, I use the word relational data base different from
SYSTEM R type people. Relational to me means links, okay;
hierarchical network, that type of thing, so when I use it
that's what I mean but it is a relational data base. Any
application can use it and be written on top of it.

Dick Are you using it for things like structural analysis,
Lopatka vibration analysis, simulation?

Carol
Price

Structural analysis is using it, yes. Finite element .
modeling with finite elements (instead of lines and points
they have defined entities that have nodes), parts and sub-
structures and that sort of thing with their own attributes
and their own math calculation codes on top of it.

Dick
Lopatka

Carol
Price

Dick
Lopatka

Rich
Brice

Mike
Newman

Alan
Wilhite

Okay, are those codes written in PL/l as well? Yes, so
you are really not a FORTRAN oriented company at all, is that
true?

I think GM is probably one of the bigger users of PL/J.
Our finite element application, our structural analysis appli-
cation, does send data in the NASTRAN format, that's FORTRAN,
right? And that sort of thing, but basically in the area I am,
it is PL/7.

Thank you.

Okay.

Question for Alan. How successful has the generalized
preprocessor been, can you elaborate on how you generalize?
Are all your programs capable of falling into that category?

Usually if you just use programs that use name value data
I'd say that 85 percent to 90 percent of our programs use the
general preprocessor and the other 10 percent need to have a
special written preprocessor to change geometry or to calculate
new values. The geometry preprocessor allows arithmetic state-
ments that allow you to take like two variables from the data
base and do an arithmetic computation to come up with a new
variable that can be used in an input string. So the general
preprocessor allows you to do a lot of things, but sometimes
it can get very complicated and you need the logic of a
preprocessor.

112

Bob
Fulton

Carol
Price

Bob
Fulton

Carol
Price

Bob
Fulton

Carol
Price

Carol, would you comment on the level of effort involved
in building your data management system, particularly the one
you have just completed. You had a learning curve; you moved
up on it. How many man years or whatever kind of quantifiable
measure you can use (or female years).

Person years, please. I just figured that number out for
somebody. We just redid it and it was about a year and a half
effort. In fact, we contracted another firm to actually write
the code, but we did the design. They had one person probably
about 8 months who did the translator itself, the APPL trans- ,'
lator. I think we had 2 designers, basically 1 programmer.
There is probably about only 4 years or so effort in the actual
writing of the data base manager system. But it has been an
elapsed time of a year and a half or two for just this upgraded
version. It has been very expensive.

Would you say you could start from scratch with the design
for 10 man years of effort all the way through to completion?

Just to write the data base itself? A lot of our effort
has been in converting our codes and things. I don't know, we
have a lot of experience behind us plus when I mentioned that
that was actually the writing of VAAM codes I wasn't estimating
the manpower. Probably 2 or 3 more years in the actual support
codes, like new file creation things that interface to the
operating system. I would think 15 or 20 man years probably.

From beginning design to completed code?

Sure. The VAAM codes themselves are about 60 programs in
all and the file interface code is another 40. Lyle, is that
right? Do you remember that number? Okay. Maybe 30 codes in
the file interface portion. And by codes I mean programs, not
the kinds of code, not the word code that somebody used earlier.

Rich
Brice

Stig.

Stig Can I ask then how much did you spend in the design of it
Wahlstrom compared to the actual coding in terms of percentages?

Carol
Price

Not that much because, are you talking on this last effort
of writing VAAM? I would say maybe a year. We already had the
design basically, it was just purely kind of a new implementa-
tion of it. Design effort was not significant at this point
in time, and I couldn't tell you how much went into the original
one, I don't know.

Stig
Wahlstrom

So you say 10 percent now was spent on design?

113

, .-.,. ,, . ,, _,, ., _. -. ~
I

Carol
Price

Rich
Brice

Carol
Price

Dick
Lopatka

Carol
Price

Dick
Lopatka

Carol
Price

Jim
Browne

Carol
Price

Jim
Browne

Carol
Price

Bob
Fulton

But that's low because it's really just a reimplementation
of the previous design.

Is it a fair comment, Carol, that your design has really
been evolving over about an 8 or 10 year period rather than
just someone sitting down and doing the design?

I don't really think so. They first did a design and
everybody used it, but I don't think anybody really was think-
ing about things that needed to be changed until we really got
down to doing it again.

While we are upon that, I remember you people publishing
a paper about VDAM a few years ago.

Oh, dear.

what has that got to do with this stuff?

Gee, I didn't think anybody here would know about that.
That was an effort by General Motors Research that was a pro-
totyped VAAM. That was the initial research. VAAM is a pro-
duction version of VDAM if you will. Research did a prototype
and initially it was meant to be our production version and we
didn't feel that we could live with it so we redid it, also.

Did you learn any lesson fran your prototype? In other
words you did it once and now you've done it again. Was there
an important learning process?

Our basic reimplementation was aimed primarily at two
things. We did add some functional while we were doing it, but
it was basically to reduce the amount of paging required on the
operating system.

It was basically a performance goal, the redesign was per-
formance driven?

Basically, yes. And also the size of the records, again
that's related to performance, but ring structures require a
lot more overhead than the array does.

Did I understand you to say, Carol, that this is the third
time through and not the second time through. Can we get a
clarification on that?

Carol
Price

Let's forget you heard VDAM, okay?

114

Rob
Fulton

Carol
Price

Bob
Fulton

Rich
Brice

Olaf
Storaasli

Jerry
Bryant

Tom
Corin

Carol
Price

Tom
Corin

Carol
Price

Dick
Lopatka

Well, I think in this kind of development-oriented audi-
ence, that learning curve is kind of important.. Did you learn
anything from VDAM for example?

I'd rather not talk about that issue.

Okay. Maybe that's what you learned.

I wonder if anybody is wondering how they get a copy of
the paper describing VDAM right now.

Question for Jerry. You mentioned your use of IMS and
also in passing PL/l, but I didn't see anything later on it.
Would you mind a comment on your use of PL/l?

It's the only way to go. No, seriously there was quite
a bit of discussion about using PL/l with IMS at our canpany.
Prior to us only COBOL had been used with one exception and
that one exception was not very successful. We had a number
of edicts that said that we would not do it and we felt it was
the only way frcm the engineering side. We don't do that much
heavy analysis but we have enough so that we felt COBOL was not
a sufficient way to approach it. Ultimately, the president of
our company agreed that we should do the job, not the commer-
cial side, and that we should select the language. Another
consideration is that I don't like COBOL, but we feel it was
a significant impact in how well we have used the system.

This question is to Carol again. Are there any published
papers on your VAAM that are available?

Yes, it will be in the Proceedings.

No, other than this?

No, this is just going into production now. If you're
really interested, we are going to be publishing a new APPL
language manual for the users which shows a lot of the external
functions and things in about 3 weeks or a month that may be
available to the outside if you want to give me a mailing list
or something. I might be able to get that for you, but I won't
promise.

Just to keep the conversation going here so you won't go
home, this question is for Jerry. It sounds like your applica-
tion was kind of in the gray area here then in terms of being
possibly implemented by COBOL rather than PL/l, so I'm somewhat
confused on whether we could call thl's a technical scientific

115

Jerry
Bryant

Ed
Rainey

Carol
Price

Jerry
Bryant

Carol
Price

Unidentified
questioner

data management application or a business application or some
nixed breed of a thing in between. How would you categorize
the system you put up?

Well, realistically, I think it's somewhere in between.
We really have a part number data base that is very simple in
design, but it's very much like any other configuration manage-
ment data base. It tells every part it takes to build a heli-
copter, so in that respect it is business in nature- Our compu-
tations, multiplications, divisions kind of things typically
are not very scientific in nature, but we have some rounding
that we do and we control precision, in the calculation of our
inertia the engineers apply a shape code and a dimension of
the parts. I don't recall the exact equations but probably
algorithms are involved. So COBOL in order to accomplish
that, as I understand, conveniently picks up a FORTRAN routine
to do that and it is limited in that respect, but I think a
fair evaluation is that there is certainly not a kind of engi-
neering application that NASTRAN is, for instance, but it is
more than your typical commercial application.

For those of us who don't speak PL/l could you address
the trade-offs between using that and FORTRAN? Perhaps Carol
also?

The obvious difference to us is the base structure with
the pointer and structures. I think that's to me the biggest
difference between FORTRAN and PL/l.

We make use of the base structure facilities as well, not
in the same manner but more from an efficiency standpoint. I
think the thing PL/l offers us that FORTRAN doesn't - FORTRAN
maybe works with IMS maybe doesn't, but aside from that PL/l
has so many more data handling capabilities. As a matter of
fact if you listen to your IBM salesman PL/l will do what COBOL
will do, PL/l will do what FORTRAN will do. It's not quite that
way, but we don't have any analysis constraints, certainly with
PL/l I nor do we have any record handling constraints with PL/l.

Another very big feature I had forgotten to mention is its
character handling manipulation. It can handle characters,
names, things like that much better than FORTRAN.

Jerry mentioned response time for his interactive system
as being approximately 3 seconds to get a complete weight esti-
mation out from the detail system. I don't think any of the
other authors today mentioned anything about response time while
you're sitting there at the terminal getting data back and why
don't I just suggest that the panel address that. Carol came
close in talking about why they have their VAAM today in terms
of performance, but that's a crucial item for the engineer
because th$y are costly to sit down at these terminals.

116

Alan Well, insofar as I'm concerned, if you'.re talking about
Wilhite

Jerry
Bryant

Carol
Price

Jerry
Bryant

Rich
Brice

ROY
Jenne

Jerry
Bryant

interactivity you should have response within 2 or 3 seconds
and you should execute a program in less than 60 seconds and
should get output. When I tark about interactivity that's what
I refer to.

For normal file maintenance we're talking about 5 to
10 second response, If we're talking about the search retrieval
it's a function of how complicated the search is, but normally
it runs anywhere from 20 seconds to a minute. Requesting a
report fran the data base as a result of this search normally
takes anywhere from 5 minutes to 15 minutes depending on the
size of the report and whether you're using a local terminal
or a high speed printer.

I don't have any particular numbers as far as displaying
a whole view on the screen, it's just a matter of a couple of
seconds normally.

I might add to that, that one of our primary design
criteria is that we have good response and as a matter of fact
at our particular installation we have limitations on the
amount of CPU and amount of region occupancy that we can have
and still run in the "quick" region. So our compromise with
that is that we do really our calculations on third shift, save
those totals and inquire them with the single data base record
access the following day. So it's not a true analysis, but we
think it's a good trade-off.

OK, let's take the question in the back.

Suppose for a moment that Jerry had a lot of parts list
data that you were willing to give to Carol and I wonder how
hard would it be for you to get that out of your data base
and into hers?

Well, not understanding that well, her system, let me
answer it this way. In a batch mode or a pseudo on-line mode,
what IBM calls batch message processing mode, I can create a
batch file whether it be disk, tape, whatever, and that is in
fact our means of interfacing with NASTRAN, so I would approach
that problem by saying that just run the IMS program and create
a OS file.

Carol
Price

We obviously can't read one. We would have to define new
entity types for our system and write codes that would be able
to read that. Ours is a different data base manager.

Unidentified
questioner

I want to ask Jerry - exactly (question inaudible).

117

Jerry
Bryant

Unidentified
questioner

Jerry
Bryant

Unidentified
questioner

Jerry
Bryant

Unidentified
questioner

Tom
Corin

Jerry
Bryant

Unidentified
questioner

Jerry.
Bryant

Rich
Brice

We have within WAVES, in addition to the mass of the part,
his center of gravity and if he is of significant size then we
have his length, width, and height. We pass that information
for NASTRAN, to a NASTRAN preprocessor really. The preprocessor
decides exactly how much mass to include in this structural grid
definition and based on that, and I'll throw a little helicopter
lingo at you, they have a maneuver, if you will, that's called
a jump take-off where you take off very quickly and it imposes
its trying to leave the weight of the helicopter on the ground
where you go up. That's one particular condition it tests, so
it's a matter of WAVES providing the information that the pre-
processor can convert into loads at structural joints and then
evaluate the integrity of those structural joints. Did that
answer your question?

O.K. You just give it an inertial load.

Correct.

You don't let NASTRAN calculate its own masses?

No. We don't see the reason why he should.

You believe your weight engineers rather than your finite
element code?

Could be lumped masses also, Dave. It may not be the
structural masses. I think he's talking about the lump masses
not the structural masses.

The lump masses, right.

You do not pass the geometry to NASTRAN, the grids and
so forth? You just pass the mass matrix and the load vectors?
Is that true?

We just pass to NASTRAN the identifier part number, mass,
and center of gravity of that mass and if it is of significant
size then its relative geometry and what our NASTKAN guy doss
with it from there I'm not really certain.

Bob.

118

Bob
Fulton

Jerry
Bryant

Carol
Price

Unidentified
questioner

Carol
Price

Unidentified
questioner

Carol
Price

It seems to me that there is a fundamental issue floating
in the discussion that we ought to be sure that we understand
fully; somebody eluded "Big Daddy IBM." They market IMS and
certainly believe that's the answer to lots of problems. We've
had the opportunity to have one group that has tried to take
maximum advantage or at least take advantage of IMS and another
one that has decided to build. Many of us cannot afford to
build so the real question is for engineering purposes what's
wrong with IMS? We had a discussion of requirements this morn-
ing. Would somebody care to comment on what IMS does not do
that was alluded to in the requirements this morning or from
the experience, for example, that Jerry has had as he “has now
learned to live with IMS. What would you like it to do that
it won't do? Because its a product that is marketed.

Well, at noon I wanted to go home because everyone said
it won't work and it makes me wonder if it really is working.
It has some constraints, at least, within our organization.
Many of which are those same kinds of constraints that are
associated with the classical IMS system where you have payroll
data along with address information. I guess the only con-
straints I can think of that are a problem to us - I guess there
are two. One is the integrity that comes with IMS imposes a
certain amount of patience which we don't like to execute all
the time, and the second one is that it's relatively easy for
your data base to get in an unsatisfactory condition, in which
case you have to devise your own piece of software to straighten
it out. When I say relatively easy that's not exactly true,
but it has happened to me on two occasions now and I think it
is significant that we were able to recover from it fairly
easily. But I really don't have too many problems with it and
I think it is in part because our system is a hybrid. It is
somewhere between a business application and a really heavy
engineering application.

It also does not support network data structures. It is
hierarchical. It allows one owner only moving dawnward from
there, and that's a very severe restriction.

Does it also have a fixed block size problem? Also you
can only have a fixed type of structures? You cannot have
variables like the . . .

It does not have variable length entities . . .

What does it have? IMS doesn't support variable length.

Most data bases don't, I believe.

119

Jerry
Bryant

I understand that IMS does support variable length seg-
merits. We at Bell for whatever the reason haven't chosen to
use that feature.

Unidentified in the sense that you have to build into it, you
questioner know ihgn'you set up your data base structure in the beginning,

you have to define it, exactly the one you want. It won't give
you anything until you build it up and at that point you have
to rebuild it.

Jerry
Bryant

Well in one case in our system we have a requirement for
a set of narratives and it can vary in length, of course, so
our solution to that was multiple occurrence of a fixed byte
segment length of 80 bytes. In some cases that kind of solution
won't solve the problem but I think in our company, it generally
has.

Unidentified In a mode of operation where you are in a heavy update
panelist mode, except for root segments , all segments that are updated

to an IMS data base go to an overflow file, an OSAM file essen-
tially, and then in retrieval mode you can get back into the
old ISAM problems of having to chase the chain out to get the
data back, so you don't get an over-the-life data base or
between re-orgs you don't get a constant retrieval rate under
IMS and this can be significant. I know we used to go through
gyrations to invert keys and all kinds of things to try and
eliminate this problem and so it's definitely a consideration
in your data base design.

Rich
Brice

I wonder if these problems that are being mentioned regard-
ing IMS and other products are peculiar to engineering, or if
business applications don't also have some rapid updates and
some variable length requirements that are not supported by
these systems.

Dick
Lopatka

Rich
Brice

Unidentified
panelist

Yes, I think there are a lot of commonality problems
between business and scientific, but I'd like to add that we
agree with Carol that the limitations of a hierarchical struc-
ture are very severe for a scientific data management modeling
and that's probably the biggest problem. But we also, it is
our understanding, that IMS is not a data item sensitivity-level
data base. It's a segment-level data base, so you do not get
down to individual name variables and we also understand that
the FORTRAN floating-point data type, which is very important
to us, does not get supported in its native form - it's
translated.

Somebody might have a rebuttal to that.

Floating point is not supported directly in IMS.

120

I

Rich
Brice

Tom
Corin

Rich
Brice

Carol
Price

The response, if you couldn't hear it, is that floating
point is supported but not as a key. Tom?

On the platform, if I may say, we have four people who
have been telling us about various data management systems and
I would like to ask one or two questions about this. For
example, in our work in ships if you have a weight for a piece
of a ship there may not be only one weight but maybe three
weights - there could be an estimated weight, it. could be a
calculated weight, or a weight that somebody actually put on
the weighing machine and recorded so that when you tabulate the
weights during estimating periods you have various authorities
for various numbers in the data base. And I'm curious in the
data management systems that people have some experience with
when they record data and people query this data and are at
the same time able to get a trace on who put the data in and
said this should go into the data base and this is its condi-
tion. And is it reasonable to keep extensive records like
this? Secondly, if I'm a user of the data base, and in 2 days
time someone happens to change the data that I have used, does
someone notify me that this number you use 2 days, well it's
no longer a good number - it's been changed. Do you consider
keeping records of this nature and I suppose that's probably
associated with the next question which is when people use the
data do they really use a copy of the data or do they extract
the real data from the memory, Again, you have this problem
of people taking data out using it and while they're using it,
someone's changing it on them. I wonder if the panel could
perhaps address some of these questions.

Why don't we start on the other end this time, Carol?

Our files are basically not a file management system. Our
files are basically the responsibility of the designer or engi-
neer who is working on it. They generally have a life of about
6 weeks while design process is going on and it's their respon-
sibility to find out about changes and it's basically their
file, so other people are not changing it. There may be one or
two people working on it, but that's it. They can be archived,
but basically the active life of a file is only about 6 weeks.
That file can then be passed on and they get a copy then: for
example, design data is passed on to engineers that do further
engineering work on it. That's a copy of the original and
usually it's worked on as a second step. We do not keep any
track of who does the changing. They are working on their
original data essentially, copying virtual memory but then they
update their permanent data. They can make copies if they want,
but they generally don't. They do have backups - that sort of
thing.

121

Unidentified Well you talked about weight class. That's a part of our
panelist system we have associated with each weight whose class is

calculated, estimated, or actual. We have done that since 1960
and as a matter of fact when we send the proposal either to
management or to a military agency we have to tell them what
percentage of that weight is estimated, calculated, or actual.
About authority to change and history of change we have a his-
tory data base that meets the military requirements that we "
know what that helicopter weighed at day one on up through
10 years later. We have a canplete history. The authority to
change data we have, we call a reason-for-change code, it is
basically in the early stages of the design, it is just a num-
ber but associated with the number is a description of that
change and that must be included on any maintenance activity in
the production stage; it is in fact the engineering document
number. We must have that code on any update activity. We also
receive reports on update activity. Incidentally, we do not
update the part number data base on-line so that changes that
some. As far as dissemination of the data and changes, the
weights group thinks they own the data and they disseminate
it.

Carol
Price

As far as the advanced system, the weights that we use are
actual vehicle weights that we derive either by weighing the
cars or actually weighing the parts so we have a good basis to
start from. In the data base for each action that we are taking
we identify the - I guess you could say either the flakiness
or the actual reliability - of the weights that we are identi-
fying. Again, we are using a class code to identify if it's
just an estimate or if we have actually weighe,d a part to deter-
mine if in effect we will gain that particular weight reduction.
As far as changes to the data base, we do flag on all the
reports that we put out changes since the previous batch-type
report and that's only done at a management level, however.
As far as the question regarding after the approval how can we
insure integrity, we lock out all the other areas other than
the vehicle office that is responsible for the total car pro-
gram, and we do not allow any changes to the weight that has
been authorized so that we can maintain integrity in the system.

Alan
Wilhite

In our *particular core systems all the weights and aero-
dynamics are estimated. Each person has .his own particular
data base although a person can retrieve a copy of the data
base and operate on his particular specialty. We really don't
keep up on whose data base is whose - they keep up on their
own.

Rich
Brice

There's an aspect here of Tom's question that shouldn't
CJD unmentioned, I guess. It's kind of a side effect - a
rippling effect. It seems to me in the engineering that I have
brushed up against that even though one person may own some
data and have control over it I probably used some of that in

122

computing my data and then someone,else used mine in computing
theirs and while one person might control the changing of his
data it's unpredictable what the ripple effect might be. In
authorizing someone to make a change I would want to know what
that ripple effect would be before I authorized it unless that
change were so fundamentally necessary it had to be done.

Unidentified I wasn't really going to address that question. You can
panelist obviously add to your system a daily report of changes. IMS

could have another layer that kept track of those bulletin board
effects. The question I have is for Alan. He has a list of
the future engineering data management system needs. He put
them down as line items and in discussing the differences
between a commercial system or specifying the engineering sys-
tem that we need for data management, it would be interesting
if we could put some numbers associated with dynamics, haw often
the data base will be updated or the kinds of relations that
you would like to be able to operate on, how many variables you
have and that kind of stuff.

Alan
Wilhite

I'm sure it would be nice for developers of this data base.
We really don't have any numbers. what we tried to do is to
use commercial data base systems for our type of applications
and we see problem areas which just can't be solved. This is
why we've put down these line items for a new general engineer-
ing data base system. So it's very difficult to assign a
quantitative value for these particular aspects.

Unidentified We could say for scope of various data types, we could
panelist have a hundred, thousand, million,

Alan Well, why talk about various data types? We're just talk-
Wilhite ing about fixed point, floating point, logical things like that.

Unidentified When we talk about discrete design points . . . if you're
panelist running your analysis and you're doing a simulation or a syn-

thesis, you create a certain number of numbers, but if you do
a pressure evaluation then you're going to get 1,000 pressure
points per run and you run a 100 runs per design and 10 designs
per vehicle. We could start filling in some of these numbers
and maybe see what the problems really are.

Alex
Buchmann

I had the impression this morning that one of the issues
was the transition fran temporary to final data and that was not
cleared up completely. It seems to me that the transition from
the designer's work space to a final design specification has to
go through several steps. In that case the authorization mecha-
nism has to be outlined quite carefully - who's allowed to modify
data and authorize and what level and at that same point the
previous question about back tracing becomes interesting again.
I would like to ask especially some of the panelists of this

123

morning's session to cosnnent on their approach to back tracing
and be able to inform other users of a certain modified data
item as to the effects it may have and who is going to be
affected by a change.

Steve
Fenves

We maintain all functional dependencies as doubling lists
so that as soon as any data item is changed (what constitutes
a data item is your definition; I left that slide purposely
very vague) all of its dependents are set to void. If you want
to think of it as being erased you can think as being erased;
if you want to think of it as just a warning propagated, that's
an implementation. The result of that is that if anybody wishes
to access a derived item he finds that it is void and therefore
he has to recursively go down until he can recompute the new
value based on the current values. Again, in implementation -
there are lots of questions that have to be resolved. This only
takes care of the 3oolean relationship between the variables.
To what extent actual sensitivity calculations can be performed
so that the effect of a particular change,can be stopped when
it is no longer significant we don't know. We are looking at
some of these issues but we don't know. On the issue of the
authorization for change in level; again, we propose a mechanism
of segregating data by permanence levels - what kind of adminis-
trative mechanism is involved in changing from one level to the
next is a management decision and to a large extent it's an
implementation decision. Namely I once a level has been changed,
do you want to erase the earlier data or do you want to main-
tain them in parallel?

Rich Any others who want to comment on that particular
Brice question?

Margaret
White

The technique we use at Lockheed differs on the type of
data. If it's matrix data or NASTRAN data block data we have
five levels of identifiers for the data itself. Two of those
things are date and time. You're only required to give a
minimum of two levels in order to identify your data. If
however, you give those two levels - we call them job and
matrix number for a lack of other names. If there are any
others there that have been produced since the time you've used
the data last, our data management system will not bill the job
and will list the ambiguity at which time then you have to
determine which particular matrix you want by date and time so
that we pretty well have eliminated any misuse of data that's
been calculated in the matrix data. As far as card image data
that is used for bulk data we use a software product, PANVALET,
and it has a level indicator. Any time the data set's up-dated
the level is changed so all you have to do is look at your data
set and know if it's changed. It also has a facility of put-
ting it into a production status which means it cannot be
changed so that you are insured that your data hasn't changed
since you used it last.

124

Rich
&ice

Someone else have a comment on.this particular question?

Unidentified Well, the same thing could be done at the data base level.
questioner YOU could have a number of users that are for a particular pro-

/ ject that are authorized to use that type of data, could set
up data say with two or three different codes; everybody could
use it and one, maybe only a few people can use it and maybe
nobody can use it. Something could be done, couldn't it?

Rich
Brice

Yes.

Unidentified I would like to ask Stig to comment on this from IPAD
questioner development, particularly the ripple effect and how they plan

on handling that.

Rich
Brice

Would you care to comment on that, Stig?

Stig
Wahlstrom

Yes, I'd like to comment on that. This is now based upon
what I have learned from the Boeing design environment again.
And that is changes are going to happen often, even in later
stages of product life, even when they are maybe in service
for several years there will be several changes made. The
reason that that is the only and overriding reason in the
company is the concern for the true end user which is people
like you here that they don't drop down too fast when you use
the Boeing product. There are technical reasons, there are
safety and concern for things like that, so that there will be
changes made for instance to change the wing skin inboard of
the engines to some soft material to make it better in fatigue;
there are lots of reasons that will happen in the various lives
of Boeing products. The company spends a tremendous amount of
time and effort right now to trace the rippling effect of those
changes whatever that means. And they have large staffs that
manually do that. And I see no reason when we go through com-
puterized data management system that the use of the information
cannot be recorded so that when a'change has happened to one
information that the system cannot process and find all the
users of that information and notify them and that is what we
have been thinking of for IPAD, that is the way to go. The pro-
cessing may take quite some time. I don't think we need to
have that within the next second or two. We can get it within
the day, or within the hour is probably good. Right now it may
take weeks if not months for the company to be able to make
such assessments.

125

Rich
Brice

Michael
Garrett

Alan
Wilhite

Unidentified
panelist

Unidentified
panelist

We need a judgment from our conference chairman. It's
4:30. Should.we cut off the questions and continue informally
during the refreshments or should we go on for a few more min-
utes? Good. Now do we have any more questions? Yes, we do
have one more back here.

I believe each of the systems discussed has some kind of
display system interface. I was wondering if you could com-
ment on how the fact you are going to display the information
may have affected the design of this system and the way the
information is stored and vice versa.

In the vehicle design system, I think the very first most
important thing is to data base and the second most important
thing to do is the geometry and how you handle it, and one is
really tied with the other and you cannot separate the two.
Those two aspects have to be married together before we can do
any decent geometry display of your data manipulations and so
forth.

I'm not sure I understand the question but I might respond.
This should be a good one. Actually, when we designed our sys-
tem we were more concerned about achieving objectives because
of the risk involved and our prime concern was to make the sys-
tem as user-oriented as possible to insure that we got maximum
communication across all organizational lines. While redesign-
ing the data base we also tried to develop it in a way where
the most volatile information, or that information that, I
should say, would be searched most often was in a position that
we could get it and get it quickly. The areas that were non-
volatile, we obviously put it off where it was'n't as easily
accessible. As far as the system, I guess that's about all I
want to say.

Well, the design activity of any product is going to change
the mass properties and if you get several hundred engineers
designing daily the mass properties are changing daily. That
to us meant we, to be current, should update daily, hourly,
something, not every 2 weeks and in fact we were updating by
the hour, it was just in a manual manner. So we felt that the
data had to be current. We chose daily updates with some sup-
plement to that. And that to us meant that it must be on-line.
We did a calculation on the number of feet of listings that
would be required at 8:00 each morning and it was, I don't know,
20, 30, 50, something. If you really want to update daily and
create all the reports that you would want for the visibility
it's not very feasible to eliminate the on-line capabilities.
So that was the driving force behind our design.

126

Carol
Price

Well, our system being a basic display system, graphic
system, the data base management system is designed basically
for the high interaction rates that that system puts on us.
The actual data base itself is designed more around the rela-
tionships involved in a geometric shape but other than that,
not because it's being displayed on the screen.

Unidentified I have in my notes early from this morning H. Loschigian
questioner made the comment saying that upstream and downstream effect of

data . . . I'm wondering why he hadn't spoken up on the subject
as yet, and what effect does the change of data have on other
people?

Rich
Brice

Did the person the question was addressed to understand
the question?

Well, it looks like we're about to run out of questions.
I'm sure there are going to be plenty of thought-provoking dis-
cussions. I would like to raise one issue just to think about -
kind of a philosophical issue - to resurrect this notion of
dynamism or dynamic nature of the structure of the data base
itself as opposed to dynamic data, that we've heard about a 5
or 10 minute discussion here on integrity and how difficult it
is to maintain, even with the rather static, rigid kinds of
systems we now enjoy. Is anybody out there worried about the
integrity you might have if you had one of those dynamic kinds
of system? I think that's the point.

127

12
MANAGEMENT OF ATMOSPHERIC DATA

Roy L. Jenne and Dennis H.-Joseph
National Center for Atmospheric Research*

INTRODUCTION

Our small section at the National Center for Atmospheric Research (NCAR)
has the responsibility for establishing and maintaining archives of metearolog-
ical data to support various research projects at NCAR. We give careful con-
sideration to the overall data needs for meteorological and climatic research
in the university community. We also have participated in a number of research
projects, such as the effort to establish the climatology of the southern hemi-
sphere from the surface to 10 kPa (100 millibars).

We will describe our overall approach to accomplish necessary data manage-
ment functions while keeping the use of staff time and computer resources rela-
tively low. In this way we can concentrate on the primary tasks of cleaning up
the problems in various data sets and of preparing new sets.

NCAR DATA HOLDINGS

In our group at NCAR we have over a hundred different data sets, many with
various subsets. They vary in volume from one tape to several hundred. The
data are now on several thousand tapes, and some are on a mass storage system.
Data held by our group includes temperature, humidity, pressure, and wind
measurements at the earth's surface.and at upper levels in the atmosphere.
Generally, our data cover long periods of record at many station locations
around the world. We also have large holdings of meteorological parameters on
grid point map representations. One data set contains a total of about 30 mil-
lion reports each year from 9,000 major surface weather stations around the
world.

Additional thousands of tapes at NCAR contain model output. A few other
groups also have significant volumes of data.

In the field of meteorology, there are many thousands of tapes of data
which we would like to be able to easily share with each other. Fortunately,
it is usually fairly easy to exchange data sets once they have been prepared.

*The National Center for Atmospheric Research is sponsored by the National
Science Foundation

129

However, data sets with extremely high volume give special problems which we
will discuss.

COMPUTING HARDWARE

NCAR has a CDC 7600 and a CRAY computer that is several times faster.
There is a small computer to accept program jobs from about 37 organizations
(mostly universities). NCAR obtains its fast computers primarily to run a
number of large, complex models that require much computing power. Such models
normally have a very high rate of data flow to and from disks while the model
is running. Enough data are saved that such "number crunching" jobs also be-
come sizable data processing jobs. Large data processing jobs can similarly be
large number crunching jobs. Processing the data from NCAR's aircraft requires
about six percent of the capacity of the CDC 7600 during a year. In processing
satellite data at NOAA's National Environmental Satellite Service, there often
arenYt many calculations per bit of data, but there are so many bits that two
IBM 360-195's are needed to keep up with the firehose of information. Their
computers have to be configured with more channel input-output capability than
at NCAR where less of the data must pass to and from the outside world. Both
require very high capacity channels to and from disks.

Data can be saved on half-inch magnetic tape. More recently, an Ampex TBM
mass store has been available at NCAR for this purpose.

RANDOM ACCESS AND DATA BLOCK SIZE

Many of us have heard discussions about data problems in which a person
talks about their mountains of data on tapes and the problems in managing it.
They often envision the "cure" as a mass store with a data management package
that will allow them to keep track of the data and have prompt random access to
all of it. Unfortunately, there are hardware realities that require modifica-
tions to this outlook.

Table 1 shows that high speed core memory costs about five cents per bit,
disks about .003 cents, on-line mass storage about .0006 cents, with still
lower costs for off-line data. It also shows that the access time goes from
27 ns for data in memory to about 40 ms from a disk and 3 to 10 set from a mass
store. Each organization makes compromises between access time and total system
costs when they purchase their hardware. In most cases of managing large vol-
umes of scientific data, it is appropriate and necessary to accept a drop in
average access time in order to achieve lower costs. This can be done without
sacrificing the total through-put of the system.

Size of Data Blocks

It is important, as noted in reference 1, to consider the size of the in-
dividual blocks of data that are stored in each of the types of memory. The

130

blocks of data must be large enough that on the average they amortize the access
time. This means that with disks we need about 10' to lo6 binary bits in a
block and at least 10' bits for the transfer of a data set to the mass store
(see table 2). Thus, mass stores are actually not full random access devices
as is commonly thought. Some data sets that are frequently accessed in two
very different sequential orders, must therefore be stored twice. The through-
put of some large computing systems has been seriousiy hurt by transferring
many small blocks of data to the disks.

Data Pointers

Another common argument is that since it is costly to move data around a
computing system, why not use index pointer systems to select only the needed
data for return to the program. We recognized above that we cannot actually.
read small amounts of data from disks or mass store and achieve a reasonable
average data flow rate. Other aspects of pointer systems should be considered
in deciding when to use pointer systems and when to do serial searches of
larger amounts of data. If pointers are made to each small logical report in
large volumes of data, the volume of pointers gets very large. We noted that
just one meteorological data set has about 30 million logical records per year.
There are several similar data sets and many years of data. It becomes costly
to store the pointers, and accessing the proper pointers can involve going
through a pointer tree with one to four accesses to disks. On the CDC 7600 it
takes 27 ns/word to move data in core. It is reasonable to suppose that the
usual data selection logic takes under 300 ns/word. If the average access time
to a disk is 40 ms, then about 130,000 data words (60 bits each) could be
searched during one access time. Some of the access time may be overlapped and
there may be many "data hits" on the disk page, but this also helps the timing
of the serial access.

We also have noted an interesting timing comparison involving the tree
structures in sorting routines. The binary tree sort has fewer sort key com-
parisons than in the quadratic sort (which involves serial searches of subsets
of sort keys), but the quadratic sort is faster in the cases we studied. The
reason is apparently the overhead of going through the pointer structure.

In summary, the storage and accessing of large amounts of scientific data
at reasonable cost will normally dictate that pointers are not generated for
each report, but only for blocks of data organized by time or area. Thus, a
file management system is required; a system to point to each report is usuaLly
not desirable. If some of the problems of an organization require more detailed
data management packages to handle various "one to many" or "many to many" re-
lationships, these packages may be used on this portion of the data base, not
on all of it. Examples from other applications may be certain parts invento-
ries, all doctors for all patients in a hospital, etc. We may use such data
base management techniques to allow multipath access to catalogue and descrip-
tive information about our data holdings.

131

SYSTEM FUNCTIONS AND GENERAL PURPOSE ROUTINES

When designing procedures for managing data, one has to decide what re-
quirements will be handled by program functions built into the system and
where general purpose user subroutines will be used.

We often hear the following argument: programming costs are going up
while hardware costs are going down. Therefore, we must enable our programmers
to be more efficient by giving them better software tools to work with. We
feel that this is true up to a point. But the tendency is then to attempt to
design elaborate data accessing techniques which will be all things to ,a11
people. The large variability of data types, data formats, and possible re-
quests can result in the failure of such attempts on all but relatively small,
specialized applications. If the end result of such a system effort is a com-
plex system, then more programming time may be spent in learning the system and
often fighting it than would be needed if the programmer used modular routines
that were simpler. One must also consider the cost of developing any system as
part of the overall cost. Thus, the response to some proposed systems might
well be like Blondie's answer to a salesman at the door, "But I can't afford to
save any more money."

NCAR's approach to the data accessing problem has been to develop program
modules which permit accessing any data set through the correct application of
these modules. Basically, the modules can be separated into input/output rou-
tines, data manipulating routines, and special purpose data routines. The
methods are discussed more completely in references 2 and 3. Certainly, this
scheme does not allow simple access to the data for a nonprogrammer, bat by be-
coming familiar with a few FORTRAN subroutines a relatively inexperienced pro-
grammer could learn to access most data sets.

What is needed from the computer system is the ability to deliver volumes,
files, and records of data to the program. It must be able to deliver a reason-
able length record of characters, and it must be able to return a binary record
as a string of bits with no changes. We send data to many organizations. It
is incredible that our most modern suppliers of hardware and software often
make their systems and instructions so complex or inadequate that many reason-
ably competent users have a struggle to set up the job control language to
properly read a record. Users should also insist that each machine be provided
with a general purpose routine, such as GBYTES, that permits easy access to
bytes of data (1 bit to word length in size) which may cross word boundaries.

When the programmer uses modular routines (such as unblocking routines,
byte accessing, etc.) to solve a problem, it usually takes less learning time
than if most fu,nctions are in the system. It is also more flexible, thus per-
mitting the programmer to easily handle various cases. Transporting code to
other computers is often simpler with this approach, since the code can be
written such that providing the data handling modules on the new computer is
often sufficient to make the code run.

The program timing is often better if modular subroutines are used rather
than system routines for the same function. For example, we noted that a sub-

132

routine used to block 80 character records took an overall output time of 4.3
microseconds per word compared to 52.3 microseconds when the equivalent function
was done in the system.

In summary, a system must provide many services, but many functions are
best handled by modular routines outside of the operating system.

DATA SET STRUCTURE AND ORGANIZATION

There are several important factors to consider when setting up a data
base. One of these is the internal structure of the data set. One must con-
sider file and record contents, and character versus binary data formats.
Another factor is the problem of merged versus separate data sets. Finally,
for high volume data sets, there is often a need for an associated lower volume
set.

Structure of Data Sets

The data within a data set can be considered as a series of files, each
composed of records of data. Each physical record has the desired information
in a string of characters or a string of bits. The records and files are moved
around the system in various ways, and may at various times be sitting on tape,
mass store, or disk. The programmer doesn't have to worry much about the vari-
ous data paths as long as the storage is reliable, and the file management sys-
tem delivers the desired information back to his program in the same form that
it was created. Checksums should be kept with the data to insure that it hasn't
been altered.

The system for the minicomputer on the NCAR mass store was designed to be
simple enough that it is able to keep up with a high average rate of data flow
between the mass store and the fast computers (the burst rate is 5 megabits per
second and the data are in million bit blocks).

In our overall data set management on the mass store, we save the data by
data sets that average at least 10' bits. Most are closer to one to three
times 10' bits long. Thus, the system is quite parallel to current magnetic
tapes.

Data in Character Codes and Binary Packed

It has become rather general to think of information as a string of char-
acters where numbers are almost always thought of as digits in the base 10
number system. It has been too generally accepted that while binary information
Ilight be output from one's own computer and read back in, the only practical
day to exchange information between computers is to convert all binary numbers
to base 10 digits, output these, and then read them into a second computer for
conversion back to binary form. Such conversions take a lot of computer time
and the character data require more storage volume than the alternative binary

133

packing.

It is common to achieve a reduction in data volume by a factor of 2
with binary packing, and a reduction in access time by factors of 5 to 10.
In the case of one set of atmospheric data received on 56 tapes there was a
volume reduction factor of 3.9 by using binary packing and variable length for-
mats. The computer processor time necessary to access all of the data was re-
duced by a factor of 10.9.

An array of data will often have a rather large base value, but only a
small variation. By subtracting the base value, the array may be stored as a
series of relatively small positive numbers. These positive numbers usually
are then multiplied by a common power of two (scaled) to retain the maximum
precision within the given number of bits used for packing. Many data sets may
have room for data that normally isn't present. A few contain up to 80% missing
data codes. Usually a change in the format structure will allow one to save
much of this wasted volume. Some data compaction schemes require a large amount
of computer time to pack and unpack the data. They then aren't practical for
large data sets, and that is where they are needed.

In an earlier section, we referred to modular routines which aid in many
of the data processing tasks. One of these should be a short utility routine
that makes it as easy to handle binary information as it is to handle character
information. At NCAR the routine used to pack data is called SBYTES (store
bytes) and the routine to unpack it is GBYTES (get bytes). The calling argu-
ments show the location of the data, how it is to be packed and the length of
the bytes. Reference 2 describes these routines, and lists the necessary codes
for several types of computers.

Integrated Data Sets

If data are of similar types or are commonly used together, it can be
efficient to integrate the data into one common data set. However, it is then
harder to access any one part of the data. Thus, compromises are usually nec-
essary between having data “too scattered" and "too integrated." We believe
that there is now a tendency to move too far toward the latter extreme. We
note that it usually is not difficult to read a few data streams in parallel on
input.

High Volume Data Sets

For data sets that are in the size range of tens to a few thousand tapes,
it is usually desirable to structure smaller volume data sets that capture
much of the information. These can then be easily processed to make a number
of sets that are still more condensed as in figure 1. Also, new information
about calibrations can often be applied to a well defined intermediate set
without having to go back to the large basic set. For example, in many sets of
satellite data, samples or averages of data along and to the sides of the sat-
ellite path can form a very useful set of data that is much lower in volume
than the original.

134

PROBLEMS IN.LJSING DATA

Sometimes when people talk about using data on computers, it sounds as if
the major perceived problems are the lack of common formats, the lack of high
level data management packages to work with the information, or even the lack
of a mass storage system. While each of these functions may be desirable or
necessary to easily cope with certain types of problems, they usually have very
little to do with the problems that we routinely face.

The most seriolls problem we face is that the data have not been prepared
in any form suitable for computer input. We frequently encounter other prob-
lems which make the data unusable or at least very difficult to use. Some of
these are:

a. The half-inch tape is physically unreadable.

b. Tape layout (both user and system generated) and data format informa-
tion are inadequate, missing, or inaccurate.

C. Many undocumented irregularities such as missing, inaccurate, or du-
plicate data appear in the set.

d. Information content of the set is inadequate for many applications.
For example, data for many observing stations may be presented with
no auxiliary set of location information.

e. Very large amounts of data must be examined in order to access very
useful, smaller subsets.

Thus, we try to concentrate our efforts on putting the data sets into a
reasonable format with as few mechanical difficulties and data errors as possi-
ble. In addition, we often try to maintain some information about the scien-
tific quality of the data such as noting the problems in a given method of
analysis.

SUMMARY

Scientific data sets, such as those often used in meteorological research,
can usually be handled with basic file management capabilities in the operating
system and the proper application of user programs. Careful planning can im-
prove the effectiveness and efficiency of using the research data base. When
archiving large data sets, hardware characteristics, such as storage media
access times, must be considered along with the characteristics of the data set.
Consideration must be given to the order and separation of the data in storage
so that accesses to the set do not needlessly handle unwanted data. However,
due to the speed advantages of serial access, significant data searching can
often be tolerated. "For the most serious ordering problems, the data can be
stored in more than one sort order. Very large data sets present special prob-
lems and it is often desirable to summarize or extract smaller sets which retain

135

much of the information content.

The data formats should be compact and efficient without too much concern
for standardization on a worldwide basis. The availability of appropriate data
processing program modules can make the handling of various formats and other
data handling procedures much simpler and more efficient.

136

REFERENCES

1. Jenne, R. L.: Data Processing Techniques at National Center for Atmospheric
Research, Proceedings of Climatological Data Users Workshop, April 27-28,
1976. Published by National Climatic Center, Asheville, North Carolina.

2. , and D. H. Joseph: Techniques for the Processing, Storage and Ex-
change of Data. NCAR-TN/IA-93, National Center for Atmospheric Research,
Boulder, Colorado, 1974, 46 pp.

3. , and : Meteorological Data Processing, Air Quality Meteorology
and Atmospheric Ozone Volume. STP 653, ASTM, Philadelphia, Pennsylvania,
1978.

137

TABLE l.- APPROXIMATE MEMORY SIZES, COSTS, AND ACCESS TIMES

FOR HIGH SPEED COMPUTERS SUCH AS THE CDC-7600 AT NCAR

Transfer rate does not include the reduction
caused by the average access time 1

Item Bits

Mass computer memory

Moving head disks

Mass store
(Off-line mass

store)

105 to 107

109 to 1010

1011 to 1012

- ____--.
Cents

per bit Access time
-.__---
5 to 50 30 ns

0.003 30 to 80 ms

.006 3 to 10 set
2 x 10-7

--

Transfer rate
(106 bits/set)

3000

36

5

TABLE 2.- AVERAGE DATA TRANSFER RATES BASED ON THE ASSUMPTION THAT

DATA ARE TRANSFERRED INSTANTANEOUSLY

rThe large effect of data access time on effective transfer]

L rate is shown J

Item access
Data block size

lo5 bits lo6 bits

Small drum or disk -10 ms 106 bits/set

Large disk -100 ms 105

Mass store -10 set 103

lo7 bits

138

A + Condensed set

iate se t

Basic data set

Figure 1. A pyramid showing the relative ease of use and volume of
selected basic data sets and associated derived sets.

139

13
THE CLINFO SYSTEM FOR ANALYSIS OF CLINICAL RESEARCH DATA

Norm Palley, Gabriel Groner, Marsha Hopwood,
and William Sibley

RAND Corporation

Paper not submitted for publication

141

SDMS - A Scientific Data Management System

William A. Massena
Boeing Computer Services Company

SUMMARY

SDMS is a data base management system (DBMS) developed specifically to support
scientific programming applications. It consists of a data definition program
to define the forms of data bases, and Fortran-compatible subroutine calls to
create and access data within them.

Each SDMS data base contains one or more datasets. A dataset has the form of
a relation, as defined by E. F. Codd (ref. 1). Each column of a dataset is de-
fined to be either a key or data element. Key elements must be scalar. Data
elements may also be vectors or matrices.

The data elements in each row of the relation form an element, set. SDMS permits
direct storage and retrieval of an element set by specifying the corresponding
key element values.

To support the scientific environment, SDMS allows the dynamic creation of data
bases via subroutine calls. It also allows intermediate or "scratch" data to
be stored in temporary data bases which vanish at job end.

BACKGROUND

Scientific computing and business computing are distinct activities in most
organizations. The reason stems largely from the nature and structure of the
data processed in the two fields. Business applications are concerned with
tracking and controlling business activity. They work mainly with the attri-
butes and status of a set of real objects such as parts, people, and airplane
seats. In contrast, scientific applications manipulate the mathematical models
of real objects. They deal with mathematical structures like vectors, matrices
and polynomials.

Data base management systems (DBMS) have been developed primarily in response
to the needs of the business environment (ref. 2). SDMS is an attempt to make
the concepts implicit in these systems available to scientific application pro-
grams, along with new concepts related to the support of modeled objects.

143

SDMS ORIGINS

The Boeing Company is developing a large system of programs called PAN AIR un-
der contract to the NASA Ames Research Center. This work is being conducted
jointly by the Aerodynamic Research Group of the Boeing Aerospace Company and
the Advanced Aerodynamic Systems Group of the Boeing Computer Services Company.
PAN AIR will compute the aerodynamic performance of panelled bodies using ad-
vanced state-of-the-art techniques.

The PAN AIR system will be comprised of stand-alone modules coded in Fortran
running on Control Data Cyber series computers. SDMS was conceived as the
principal means of defining data structures for PAN AIR modules and supporting
inter-module and intra-module data transfers. SDMS will be delivered to the
government as part of PAN AIR.

GUIDING PRINCIPLES AND CONSTRAINTS

The development of SDMS has been shaped mainly by playing the requirements of
the PAN AIR engineering and scientific environment against two premises:

1. The structure of external data should be defined external to any us-
ing program.

2. External data transfers should be performed using an abstract medium
rather than a physical one.

The first premise is a statement of the notion of data independence. Without
it, one could not build a general-purpose DBMS. The second divorces input/out-
put from the file and record level at which the physical transfer takes place.

To understand the advantage of data transfer at a higher plane of abstraction,
consider the contrast between compiler language and assembly language program-
ming. The assembly language programmer works with the physical computer, al-
locating register usage and memory space directly. With a compiler language
such as Fortran, the user deals with an abstract machine; none of the under-
lying physical components are visible. His work at this level is largely phys-
ical-machine independent.

Similarly, the programmer doing file-oriented data transfer also is working
with physical entities; files, records and devices. By working at a higher
level of abstraction with a data language, he can obtain the same kind of bene-
fits which are associated with the use of a compiler language.

144

I ; SPECIAL SDMS FEATURES

SDMS supports temporary data bases , which vanish at job termination, in addition
to permanent data bases. This makes possible the design of programs in which
all disk transfers exclusive of human-readable input and output can be perform-
ed within the SDMS framework. We do not argue that one would always want to do

However, the increased generality of this approach makes possible much
i:oader use of data base techniques within the scientific environment.

SDMS supports dynamic creation of data bases, any number of which may be based
on the same data model. In the business environment, data base creation is a
one-time special event. In the scientific environment, data bases involving
modeled objects will come into existence spontaneously. Also several of these
data bases may share the same form.

SDMS has been tailored to the kinds of operations in common use in scientific
applications. This is expected to provide an easier transition from file-ori-
ented to data-oriented methods.

SDMS DATA BASE LOGICAL STRUCTURE

SDMS provides for the definition of program-independent data structures through
a "master definition" in text form. The master definition is written in SDDL,
the Scientific Data Definition Language. The syntax of SDDL is given in table
1. A sample master definition is shown in figure 1.

An SDMS data base consists of structured data collections called datasets.
There are two classes of dataset; random and sequential. The random dataset
has the simplest structure (fig. 2). It corresponds to a relation in which
key elements (if present) are grouped into a "key set" and non-key elements
are grouped into an "element set". The individual items in an element set are
called "data elements". Data elements and key elements are referenced by name
and have the attributes of type and structure.

Data element classes include: scalars, fixed- and variable-length vectors, and
fixed- and variable-size matrices. Data element types include text, real, and
integer.

A sequential dataset contains element sets
ed "element set sequences" (fig. 3). These
files. Key elements (if present) are assoc
quence rather than a given element set.

in the form of one-way chains call-
sequences correspond to sequential

iated with a given element set se-

145

SDMS DATA MANIPULATION LANGUAGE (DML)

All processing with respect to a given data base is performed by Fortran calls
to SDMS utility subroutines within an application program (fig. 4). The crea-
tion of the master definition file is done by the Data Definition Processor, a
separate program.

Note that this act does not create an instance of a data base. It defines the
form of a set of data bases with identical structures. In this way, different
data bases can be dynamically created using the same data base definition. For
example, a master definition might describe the general structure of airplane
geometry data, while individual data bases using it would contain geometry val-
ues for specific airplanes.

The data manipulation functions of SDMS fall into the following categories:

1. Opening old and new data bases.

2. Closing data bases.

3. Forming correspondence between program variables and data base
elements.

4. Transferring data to and from random datasets.

5. Transferring data to and from sequential datasets.

OPENING DATA BASES

A single call opens a new or old data base. Opening a new data base requires
that a master definition be referenced to define its structure.

Data bases may be temporary as well as permanent. A temporary data base exists
only until it is returned or the job ends. This makes it suitable for the
storage of "scratch" or intermediate data.

Several data bases may be open and active at the same time. The upper bound is
essentially determined by available memory space.

CLOSING DATA BASES

Closing a data base releases all dynamic memory associated with it and makes it
unavailable until reopened. In addition, temporary data bases may be "evicted"
from the system as well. This allows general purpose routines to open a
scratch data base, use it, and then evict it when they are finished.

146

DATA BASE MAPS

Before any input/output operations can be performed on a dataset, a named "data
map" must be constructed which identifies program variables to be associated
with all key elements (if present).and selected,data ielements in the dataset
definition. A sequence of subroutine calls is used to define each map.

For example, assume a data base named AER747 exists with a structure as given
in figure 1. A map M for dataset MATRIX-P,ARAMETERS might express the following
relationship: "dataset elements MATRIX-NAME, ROW-DIMENSION, COLUMN-DIMENSION
and MATRIX-TYPE are associated with Fortran variables MATNAM, ROWDIM, COLDIM and
MATTYP respectively." This relationship serves as a basis for data transfers.

RANDOM DATASET INPUT/OUTPUT OPERATIONS

Each map provides a two-way path between the application program and a dataset.
After any key element values are set, a subroutine call referencing the map can
cause a new element set to be created, or an existing operation might be "out-
put program variables using map M". Figure 2 shows how key element values are
used to distinguish between element sets.

SEQUENTIAL DATASET OPERATIONS

A map is used to open a specific element set sequence in a dataset. Several
sequences may be open at one time. The application program may get or output
the "next" element set in the sequence, in the same way that the next record
on a sequential file is read or written using Fortran input/output statements.

Flexible positioning options are provided. A sequence may be positioned at its
beginning (rewind operation) or at its end.

Element set sequences are generally less expensive to process than random ele-
ment sets due to the next property (no indexing) and the use of blocking. It
is expected that certain classes of data will find efficient expression in this
form.

IMPLEMENTATION

An SDMS data base consists of four files; a copy of the master definition file,
an index file to hold key set information, a file to hold element sets belong-
ing to random datasets, and a file to hold element set sequences. The master
definition file copy holds structural information about the data base.

The index file contains a B-tree (ref. 3) for each existing dataset. Each B-
tree holds key entries arranged in ascending order on key set values. Key

147

entries point to corresponding data blocks on the random element set or element
set sequence files.

The random element set file holds element set records for random datasets.
File records are accessed only through the index file.

On the element set sequence file, each sequence appears as a chain of fixed-
length blocks. Element sets are packed into each block as variable-length log-
ical records. This structure was chosen to maximize sequence-processing effi-
ciency and space utilization. Several sequences can be manipulated at one time
without interference.

STATUS

SDMS is currently in a test environment under the Control Data NOS operating
system for Cyber series computers. A conversion to the SCOPE operating system
for the CDC 7600 computer has also been completed.

FUTURE PLANS

The initial version of SDMS permits data base access only through specific
compound keys. Features will be added to permit qualified retrievals from
coupled datasets. A query language is also planned to allow stand-alone access
to data bases.

A generalized data base load/unload capability is also planned. This will sim-
plify data base loading, machine-to-machine data transfers, and data base re-
organizations.

.
CONCLUSIONS

SDMS is an attempt to marry data base concepts to the kinds of data and pro-
gramming methods which appear in the scientific environment. Within it, the
notion of "data base" is broadened to include temporary as well as permanent
data. Dynamic data base creation allows a data base form to be associated

.with a modelled object.

The experience we have had to date indicates that data base methods can be of
great benefit in the organization of scientific programs. SDMS permits the
logical grouping and expression of external data early in the design process.
Important data entities can be named and discussed before any using programs
exist.

The mapping of data groupings into the physical media are transparent to the
user. He does not have to put unrelated data on the same file to eliminate
buffer space, or map multi-keyed items into a single key, or avoid the use of

148

: random files altogether because they are too clumsy.

The programming of input/output functions is simpler, especially wh.en data must
be aggregated over runs.

In conventional input/output programming the introduction of new data into an
existing program often has a disorganizing effect. Data base methods minimize
this tendency.

REFERENCES

1. Codd, E. F.: A Relational Model of Data for Large Shared Data Banks.
Comm. ACM 13, 6 (June 1970), pp. 377-387.

2. ACM Computing Surveys, Vol. 8, No. 1, March 1976.

3. Bayer, R.; McCreight, E.: Organization and Maintenance of Large Ordered
Indexes. Acta Informatica, Vol. 1, No. 4, 1974, pp. 173-189.

149

I

TABLE l.- SDDL SYNTAX

‘2 <master definition > - MASTER DEFINITION master defn name
<dataset defn >*

END DEFINITION

<dataset defn> - DATASET dataset name
C<password list>]

[DIRECT]

[<key set>]

C<element set>]

END DATASET

<password list> - PASSWORDS
<password desc.>*

END

<password desc.> 2 password <option>

c key set> - KEY SET
<element desc.>*

END

<element set> - ELEMENT SET [SEQUENCE]
<element desc.>*

END

<element desc.> - element name [<subscript>] [Csubscript>]Ctype>

<subscript> -+ <integer> I element name

<type> - REAL 1 INTEGER 1 TEXT

<option> - REAG 1 WRITE

Note: xx>* = <x>
. . .

ix>

[xl = optional item

150

$ THIS DEFINITION DESCRIBES A FAMILY OF MATRICES.
$. EACH.MATRIX IS COhSTRUCTED AS A SEQUENCE.OF ROWS.
$ MATRICES ARE KEPT IN DATASET 'MATRICES'. MATRIX
$ ATTRIBUTES ARE KEPT IN DATASET 'MATRIX-PARAMETERS'.

MASTER DEFINITION MATDEF

DATASET MATRIX-PARAMETERS

KEY SET
MATRIX-NAME

END

ELEMENT SET
ROW-DIMENSION
COLUMN-DIMENSION
MATRIX-TYPE

END

END DATASET

DATASET MATRICES

KEY SET
MATRIX-NAME

END

ELEMENT SET SEQUENCE
LENGTH
ROW LENGTH

END

END DATASET

TEXT

INTEGER
INTEGER
INTEGER

TEXT

INTEGER $ ROW LENGTH.
REAL 8 MATRIX ROW,

END DEFINITION

Figure l.- A sample SDMS master definition.

151

KEY
VALUES

r

r

L

PHI 7 13.4
-

-

1.2,4.,0.
ELEMENT
VALUES

Figure 2.- Random dataset structure.

152

KEY VALUES

I LIKl

KEY VALUES KIKCl[
.

0

Figure 3.- Sequential dataset structure.

ELEMENT

SET
SEQUENCE

153

PDP
- PROGRAM

MASTER DEFINITION CREATION
--------------------------------_ _-----.

DATA BASE CREATION

I
I

-Be--

COPY
•? i

USER
PROGRAM

DATA
BASE

.
Figure 4.- Definition creation and usage.

154

15
x10 - A FORTRAN DIRECT ACCESS DATA MANAGEMENT SYSTEM*

David P. Roland
Informatics PM1

SUMMARY

This report describes the XI0 system, a set of subroutines that provides
a generalized data management capability for FORTRAN programs using a direct
access file. Arrays of integer, real, double precision, and character data may
be stored, each logical group of data identified by a unique "matrix" number.
A matrix may be organized and stored as "batches" to reduce core requirements.
Batches may be accessed randomly or sequentially. The file may be checkpointed
and retained, allowing for restarts with stored values. The XI0 subroutines
operate on either IBM 360-37O/OS/VS or DEC PDP-ll/RSX computing systems.

INTRODUCTION

The XI0 system replaces the use of scratch data sets that is a common fea-
ture of FORTRAN programs. Typically, these scratch data sets are sequentially
structured files accessed with binary (unformatted) input/output (I/O) state-
ments. This sequential structure restricts the ability to access data effi-
ciently in the random manner often required during program execution. For
example, a back substitution in a matrix solution requires reading the data in
the opposite order to that in which they were written, while interactive appli-
cations often require access to many different types of data in an arbitrary
order.

The physical device used for these files usually has a direct (or random)
access capability which is available via subprogram calls or non-standard
language features. Each record of a direct access data set is addressable in
a random manner allowing for efficient data retrieval, record reuse, and update
in place. However, without a data management system, the user is burdened by
the need to do the bookkeeping necessary to keep track of where in the file
particular data are stored.

The XI0 system evolved from a set of subroutines written for an early
FORTRAN II IBM 7094 structural analysis program. The authors, A. L. Eshleman
and L. J. Davis, used a single magnetic tape unit to store all input, inter-
mediate, and output data and matrices as numbered arrays. These subroutines
kept track of the current tape position and rewound, backspaced, or read for-
ward to access randomly any matrix or data array. This tape I/O system reduced
the buffer space required, provided random access on a sequential medium, and

*Work performed at NASA Ames Research Center, Moffett Field, CA, under
Contract NAS2-6914.

155

standardized the I/O interface. When the program was converted to the IBM 360,
the TIO routines were converted to use the OS/360 FORTRAN direct access I/O
feature. Only the low level routines needed to be changed. Ironically, the
increased canputational speed of the 360 caused a core problem as it was now
possible to run larger jobs. To reduce the program's core requirements, a
scheme for subdividing the matrices into batches was instituted. These batches
had to be pre-allocated and could only be accessed sequentially. XI0 uses this
matrix/batch identification scheme and removes the restrictions of the earlier"
systems.

FEATURES

The purpose of the XI0 system is to provide the benefits of direct access
storage without the bookkeeping burden. It provides subroutines that store and
retrieve data on a direct access data set (the Xfile) while performing the nec-
essary bookkeeping. Features of the system include:

(1) Storing Data in Subsets to Reduce Core Storage Requirements - A subset
or batch of data is analogous to a record on a file. Each data type (matrix)
would represent a file in which each batch constituted one record. Batches may
be retrieved 'sequentially (first batch, next batch, etc.) with the system indi-
cating the end of batches or randomly (last batch first, first batch second,
etc.) without disturbing the 'next' position pointer.

(2) Variable Length Record Blocking - Some implementations of direct access
I/O restrict the user to fixed length records. The XI0 system allows variable '
length I/O by performing the blocking and unblocking required for multi-record
access.

(3) Monitoring Record Usage With a Bit Mae - Data to be stored are sized
and the bit map searched for a block of contiguous records large enough to hold
it. Records are reused and updated in place when possible. This feature mini-
mizes the total disc storage required.

(4) Tracing All XI0 Functions - An optional diagnostic trace of all XI0
functions is an integral part of the system. The output can be directed to any
FORTRAN unit for separation from other outputs.

(5) Automatic or Demand Checkpointing - At user defined intervals (or on
direct call) the pertinent XI0 system information is written to the Xfile in
reserved locations. This allows a program to restart using the saved Xfile
following the completion of a partial execution or after a program termination
or system crash.

(6) Standardization - Applications programs are insulated from system
implementation differences.

156

USE

Programs incorporating XI0 are usually structured to be data driven. Data
types are defined and assigned matrix identity numbers. The initialization of
the Xfile is performed and an input file is read from cards or a DBMS to obtain
the run parameters and analysis data. The data are stored on the Xfile as an
"execution time data base," and the processing modules are called. Each appli-
cation module performs its function, reading its input from and storing its
output on the Xfile (fig. 1). The presence of particular data may be a signal
to the scheduling module to cause the execution of a particular application
module. Modules often access batches sequentially in a "do while there are
batches" mode of operation. At the completion of each stage, a save is made,
allowing for a restart at that point. Upon program canpletion, the output
results can be extracted for printing, off-line storage, or update of an
on-line data base.

The data directory is an external document used to allocate and communi-
cate matrix identity numbers. XI0 does not maintain any data descriptions and
therefore does not define or restrict a matrix or batch to any data types or
structure. As in standard FORTRAN, program usage alone defines the actual data
structure. A matrix may be designated scratch; and, any module may use it, for
any temporary purpose, exactly as a scratch I/O unit.

IMPLEMENTATION

The system is implemented as a set of FORTRAN subroutines. Storage for
the directories is allocated by including a COMMON block named "X10" in the.
calling program. The subroutines perform the following functions:

XFILE Defines and initializes the Xfile and XI0 COMMON block.

XSAVE Saves the status of the Xfile for restarting.

XRSTOR Restores the XI0 COMMON block, restarting at the point
of the last XSAVE.

XWRITE Stores data on the Xfile under their unique identity
numbers and optional batch number.

XREAD Retrieves data from the Xfile data set. An entire
unhatched matrix or a single batch of a batched matrix
is returned. A batch may be read sequentially or
randomly.

XSETRD

XINSRI?

Specifies the batch which is to be read on the next
sequential XREAD.

Inserts a batch at a specified position on the batch
pointer chain. This also provides the ability to use a
matrix as a stack.

157

XDLETE Deletes a specified batch from the batch pointer chain,
freeing its disc and index space and decrementing the
batch number of all following batches by one.

XCLEAR Erases a matrix, .freeing its disc and index space.

XNBAT Counts the number of batches in a matrix.

The COMMON block allocated by the user contains the control variables and
pointer tables used for XI0 system bookkeeping. In addition to 14 integer con-
trol variables, arrays are required for the matrix identity directory, the
batch pointer lists, and the record usage bit map (fig. 2).

There is an entry allocated for each matrix identity in the matrix direc-
tory table. The matrix identity number is used as an index to access the cor-
rect entry. The elements of the matrix directory array indicate whether the
corresponding matrix is batched or not. If the data are broken up into batches,
the directory entry contains the listhead of a batch pointer chain and the
"next" batch pointer. If the data are written as an unhatched matrix, the
directory entry contains a zero batch pointer and the record number of the
data on the Xfile (fig. 3).

Elements of the batch pointer table are allocated dynamically to batch
pointer chains and contain a list pointer to the next batch's pointer (zero
terminates the list) and the Xfile record number of the data. Unallocated
batch pointers form a chain with the listhead in the COMMON block.

.Each bit of the bit map array represents a fixed length record on the
Xfile data set. When data are to be stored, a block of contiguous records
large enough to hold it is found by searching the bit map. When data are
removed or updated, released records are noted in the bit map. When automatic
checkpoint saving is specified, a two bit map scheme is utilized to preserve
the integrity of stored data by reusing records only after an XSAVE.

APPLICATIONS

The XI0 system is incorporated in the NASA Ames Research Center's Aircraft
Aerodynamics Interactive Parametric Equation Geometry System (IPEGS), a set of
PDP-11 programs for three dimensional display, computer-aided design and aero-
dynamic input parameter generation frcan mathematical surfaces. The Xfile is
used to communicate data among the various independent modules.

The ability to insert a batch of data at any point in the list is espe-
cially useful in interactive applications. It is commonly required to access
a particular set of data rapidly in response to the request of an on-line user,
create a new set of data, and insert it into a specific position (logically)
on the data chain. The interactive graphics application makes use of a scratch
matrix as a last in, first out stack. All data about to be modified are saved
by "pushing" a copy onto the stack by XINSRTing it at batch 1 of the stack

158

matrix. Any changes can be negated by "popping" off of the stack (via XREADs
and XDLETEs) until the desired data are again current.

The XI0 system has also been implemented on IBM 360/370 OS/VS/TSO systems
at Douglas Aircraft Cunpany. It is being used for canputer developed part
definitions and structural design programs. At Northrop Aircraft it is used
under TSO for interactive review of NASTRAN input and outputs. A modification
for real-time use has been made at McDonnell Douglas Astronautics-West. A high
speed in-core version has been designed for data look-up on an Interdata 8/32.
This application can be checked out in reduced core using disc I/O while the
actual,application can employ the high speed core resident data.

CONCLUDING REMARKS

The XI0 system has been described. It is a set of subroutines that pro-
vide a generalized data management capability for FORTRAN programs using a
direct access file. Data arrays, logically grouped and identified by unique
matrix hUIIIberS, are stored and retrieved. A matrix can consist of batches
which are stored and retrieved independently. Batches may be accessed sequen-
tially or randomly. The status of the system may be preserved and the file
retained for restarting incanplete execution.

The system has been implemented on DEC PDP-11, IBM 360/370, and Inter-
data 8/32 canputer systems. It has been successfully used in engineering and
scientific batch and interactive applications at several installations.

159

I

MA I N :
SET UP STORAGE

f3ND CONTROL FLOW
OF PROGRAM

1
.=

I

I I 1 1
r I I 1 I 1 I 1

I INPUT: I I FUNC 1: I I FVNC N: I I OUTPUT : I
SET UP XF ILE

AND
LOAO VALUES
ca\tr

PERFORM PERFORM
FIRST FUNCTION LAST FUNCT I ON

cailr caur

FORMAT AND
OUTPUT DFtTA
AS REQUIRED

I 3llVC

rfi CARDS

Figure l.- Typical program architecture using X10.

&MYOn//X~O/~SKp(i4’) A(...), BC..), c (I,,)

Figure 2.- Structure of the XI0 COMMON block.

IN-CORE DIRECTORY FOR MATRIX ID LISTHEADS

MATRIX TABLE XF I LE DATASET

LOU I> I 0 ~INRECEHEADERI DATA I

cocc 2 > I I 0
b

.
b

LOCI< NMAT > [fBf+TCH 1 1 f NEXT 8

BATCH POINTERS CHAINED
BFlTCH POINTER CHI?IN

LOU 1.) [t BATCH 11 ‘r NEXT 8 1
r I

DATA

I DKKA 1 0

TOGETHER IN TABLE
‘XF I LE DATASET

t
BATCH< I> [t BATCH 2] 1 REC 1

I
j

GA
BATCkK 2 > 1 t I3qTCt-l 3 1 4 REC 2 I I

ti
BATCH< 3 > 1 0 1 1 REC 3 1

.

.

.

_-
Figure 3.- X10 index structure.

-

PANEL DISCUSSION - SESSION III 16
SESSION CHAIRMAN:

Jim Browne, University of Texas

PANELISTS:

Roy Jenne, National Center for Atmospheric Research
Norm Palley, Rand Corporation
Bill Massena, Boeing Computer Services Company
Dave Roland, Informatics, PM1

PARTICIPANTS:

Carol Price, General Motors Corporation
Tom Corin, David Taylor Naval Ship Research and Development Center
Don McQuinn, Computer Sciences Corporation
Margaret White, Lockheed-California Company
Floyd Shipman, NASA Langley Research Center
Tom Boos, Control Data Corporation
Bernard Thomson, David Taylor Naval Ship Research and Development Center
Jim Foley, The George Washington University
Dave Loendorf, NASA Langley Research Center
Steve Sherman, University of Nevada
Joel Snyder, Newport News Shipbuilding
Linda Kirschner, Smithsonian Astrophysical Observatory
Bob Fulton, NASA Langley Research Center
Bob Thompson, AVCO/Lycoming

163

PANEL DISCUSSION - SESSION III

Jim
Browne

David
Roland

Bill
Massena

Norm
Palley

ROY
Jenne

We have had during the day, yesterday and today, a number
of speakers describing data base systems, and it is not clear
if you examine them what commonality there is among them. Hav-
ing taught courses at the graduate and undergraduate level in
data management systems, I have some definitions. I'd rather
not be the first to expose my ignorance so I'll start by asking
the panel from left to right and then ask some of the speakers
in the audience today who described the systems yesterday to
make their contributions. So let's start at the end. What's
a data management system?

XI0 is a data management system in that it allows a user
to put data away without really knowing where it went. I think
there is one level just above I/O which is you kind of know
where it goes. That would be distinguished perhaps from a data
base management system where you would not even care hw it was
organized. You can kick it off as making a distinction there
between management and organization.

I think Dave is right that if you leave the word base out,
the data management system is just what he said. If we try to
extend the definition to include data base management systems,
then what I think a bare bones definition would be is that we
have a collection of logically related data that is accessed by
name and is bound to an external definition. With these mech-
anisms then the user is insulated from the data and does not
concern himself with what is the physical form of its storage
but is interested in accessing the values by name and by group
in typically some sort of hierarchy.

That covers it pretty well. The only thing that I would
add to that are some of the capabilities which the system that
I described includes which is the ability actually built into
the management system to examine the data and provide certain
reports on the amount of the distribution of it...some statis-
tics on the data. That has got to be part of the data manage-
ment system.

I think the question is pretty well covered by now. I
think though that everything for file access systems down to
the data base systems are all data management systems, but I'm
a little sympathetic with a recent article in Computerworld
where Steve Robinson here said, I'. . . data base management
system label is stuck on too many packages." A couple of his
paragraphs are that a person looking for a data base management
system, however, is likely to end up investigating bare bones
access methods, report writers, edge-notched card systems, and
query languages to name but a few. Not that there's anything
wrong with such systems but why must they call themselves DBMS?
To answer my own question, it is because that's the latest buzz

165

Jim
Browne

Carol
Price

Jim
Browne

Tom
Corin

Jim
Browne

Tom
Corin

Jim
Browne

word, and buzz word‘items sell. I for one am distressed. It's
not that we don't have truth in advertising in DP but that we
can't agree on what the truth is.

I don't think that's going to be an easy act to' follow,
but are there any of the speakers from yesterday who would like
to add their nickel's worth? I see somebody from General Motors
is handing a microphone around.

Well, I guess in my opinion a data base management system
is not even what we have, it's more of the kind of thing that
IPAD is . 0 . asking for . . . that does a lot more. It
relieves the programmers from a lot more of the functions and
gets on that higher level. It includes query languages and all
the kinds of things that Norman is talking about. IMS, probably
IDMS, are data base management systems with error recoveries,
logs, and all those kinds of things being done for us without
the application programmers or programmers having to do that
job.

Thank you. Would anybody else in the audience that is not
a speaker like to volunteer what it means to them? How about
Alan Wilhite? I think it being the prerogative of the moderator
to have the last word or two on this particular subject then, it
seems to me that you can get it down into two simple ideas. One
of those ideas is that a system allows you to define logical
relations among data entities as well as physical relations and
to have to define and implement a set of operations on those
logical data elements and upon the relationships between those
elements. That's, I think, the first two sentences I write on
the blackboard in CS 347. But, I think an essential point that
has been raised is the comprehensiveness that can come with a
truly complete system. Most of what-we see today, even sold in
the commercial world as mature systems, often are lacking in
many of the convenience features that I think Carol Price
correctly described as essential elements. I think what we are
seeing here in the engineering and scientific world is really
much more rudimentary forms, where we are just beginning to walk,
much less jog or set new records for the 100 meter. Are there
questions people would like to raise from the floor?

Would you say that query languages and report writers are
a part of a data management system?

I'll turn to the panel from left to right.

If I was a user buying a data base management system I
think I would want to get these things.

Well, you've answered your own question.

166

Tom
Corin

Jim
Browne

Ilavid
Roland

Hill
dassena

Jorm
ralley

:oy
Jenne

Yes, but that's my opinion.

From left to right then.

Well, I think in terms of what's marketable, okay, a
system with those comprehensive features is perhaps more market-
able. It probably will also cost more. When you're selling
software just like any other product you put in a lot of devel-
opment and then you get a product out to get some cash flow and
then you bring on the next version. Sure, some of the systems
are more in that first version system to get the cash flow and
some of the older systems obviously are much more mature.

Once we're sure that many of the products that are cur-
rently being developed in the scientific domain of data manage-
ment don't have the kind of features that you're talking about
for the simple reason that we are in the infancy of this partic-
ular area. If you look back at the history of business data
management systems, they go back like 1956. In fact I was work-
ing at Stanford in 1956 with a guy who developed one of the
first RPG type applications. They have a long history. That's
over 20 years, and we're just getting started. So, while I
think those things are important, they will have to be tailored
to the type of data that shows up in the scientific world. For
instance, in business data processing you don't have any need
perhaps to fill out a graphic display of information and carpet
plots, but in scientific applications'if you query a data base,
you may well want to have that result show up as a plot. So,
there are going to be very specialized requirements for the type
of products that you are talking about in our field.

That's clearly my position. Of course, we were building a
system that was tailored to a very specific user and that makes
it a lot easier to do the kind of report generation and statis-
tical analysis that's tied very closely in with the data base. I
don't know how you do that in a very general way. The experiences
we've had already are that people want more and they want it
simpler. So, I guess that's the kind of thing we'll constantly
run into, but clearly to simply have a way of manipulating data
without being able to look at it in context is not very useful.

I sympathize with the,statements that we are in our infancy
in these areas, but I'm a little worried about the implication
that when we finally get there we're going to have one huge data
base management system with pointers to everything with all of
these features and that it won't have system overhead aspects
that will make it very hard to live with. I think that we need
to be very careful in looking at what is going down in the guts
of the systems and whether we're still getting the throughput
that's appropriate to the specific types of problems. I also

167

Jim
Browne

Norm
Palley

Don
McQuinn

Norm
Palley

imn
IBaowne ,

,worry if iwe start [with .deslgns faots for .any {of :these systems
,and :have .eve'rythi,ng .iin Pt .but Gformula:te lthe :problems such ithat
.we lhave ,to achieve the whole system :be'fore .we cgeit ;anq :of the
,returns fran the -pieces ,then we're in tr.ouble. I think &we need
,a very modular #evoLutionary type ,approach ihere :we justgradu-
(ally structure {basic syshems together ,when we .build .a ibitgger
,pie.

Can I comment that I think the 'human interface is .a ,very
integral part. I think you could perhaps divide the system up
into five canponent parts, and as far as savability is concerned
and usability that's probably the most important. I would 'tend
to say that may be one classification of the five parts: ‘you*,ve
got definition storage capability, you have access and retrieval
capability, you have data manipulation capability, you have
integrity and security capabilities, and you have a human inter-
face. The human interface is listed last there, but I think
typically it is perhaps the most important and it is certainly
the most time consuming and expensive to implement.

I'd like to add to that. I was speaking to a gentleman
during the break who was concerned with human interface, ,and
he asked me about what percentage of the code that was wrZ:tten
for the CLINFO system was devoted to dealing with the interface
and off the top of my head I said about 85 percent. The more I
think about it I think that's right. The statistics are very
simple. The I/O is very simple, that is-, with talking ,to .the
machine, but the communication with the people and formatting
the screen, erasing, moving things about, making it easy to move
from one function to another required a tremendous -amount.of
code.

Mr.. Palley, you mentioned the amount of effort put into
the human interface. Hw about the original data entry problem
into CLINFO?

Well, th'ere are a couple of ways of getting Tdata in. Data
rates in the particular application this was aimed for is r-a'ther
sma'll low ,da'ta rate, Most data are -entered a%mpQ iby hand,
There is an extensive prompting system that :as'ks .for xeach ikem
;by its name and asks the #name :oB the patient., t,h;e time 1% -was
collected., etc. That's how most ,da'ta -are :entered.. !Obv%ously., ,a
4o:t of .data are Igenerated ,automatZcaPly 'by automat%c laboratory
,dev&ces , .and they can be senteired in any ,medi.um that the2 &ppen
to come out ,on. Punch paper itape is :still :popular in 'labora-
.to#ries., 'magnetic ,tape, anything at a~1.l.. You can &mp Zt &tito
,an array and then move it into the CLINFO system aY,ter :deEining
the va.r-iables. That still ttikes time., (but ,they j;llst Yhiiile people
;to do it. It's still better than shoeboxes 'full o,b .3 Qy 5 :cz~rds,

'More -questions in the audience?

Margaret
White

David
Roland

Margaret
White

David
Roland

Margaret
White

David
Roland

Margaret
White

Jim
Browne

David
Roland

Jim
Browne

Floyd
Shipman

I have a question about XI0 for David Roland. Did you
say you were using the defined file feature of FORTRAN?

On IBM it's an assembly language subroutine that does the
same thing because IBM didn't let you use variable record length
and numbers of records. On DEC they're a little bit more
advanced.

Oh, so you use the load point macros?

Actually, the implementation I didn't do. Originally,
someone else at Douglas in systems had already written the
routine which is effectively the define file builds the DCB
and fills in the appropriate fields.

Does that do preformatting?

I think it did, but I don't think it had to.

Then, my real question is directed at IBM insofar as they
have devoted most of their software to the business environment.
What we've done at Lockheed is we've had our systems engineers
go into IBCCM and use the load point macros. They would be very
similar in concept to XI0 only we don't have to do preformatting.
The problem is everytime we get a new version of FORTRAN we have
to go in and update it. I was wondering if IBM, and I believe
there are some people here from IBM, are going to be doing any-
thing in terms of engineering data which is typically variable
length and provide this service. I know FORTRAN is essentially
a dead language, but there is a lot of FORTRAN around. would
you care to respond?

Is there anyone from IBM who would care to respond? The
microphone is yours. who is it? How many times has FORTRAN
been buried?

I would like to make one more comment about the structure
of x10. Because it uses basically monolithic arrays of data
on disk, it could be written to bypass the I/O buffers. So,
if one of the features was not to make it that system dependent,
but all the I/O is at one very low level routine that could very
well be written as a direct macro.

You have a question in the front row?

My question is for Bill Massena. One of the first
speakers yesterday was Stig Wahlstrom looking at the needs of

169

,.._.. ----- I

Bill
Massena

the engineering and scientific data management and in engineer-
ing particularly for IPAD. Within SIX3 what aspects of SLX4S
do you think meet the needs that Stig spelled out?

The specific environment that SLN3 was intended to work
for is the model object environment. I think one of the distin-
guishing characteristics of the scientific application relative
to the commercial or business application is that in the busi-
ness world they are typically working with the attributes of
real objects. For example, airplane seats, people, parts. At
the lowest level in the scientific applications you are working
with mathematical models typically of model objects. Geometry -
you've got an abstract thing so while it's a very complex struc-
ture you know what the structure is whereas in dealing with real
objects every time you put something new in the system you don't
know in general or a priori what its characteristics are so you
have to do searches for it. So SINS is intended to explore a
new area in data management, namely to look at hw would you deal
with modeled objects and the requirements of trying to save. You
want to replace FORTRAN I/O, what would you use? If you want to
deal with a logical data structure rather than a physical data
structure, what are the appropriate ways to do that? So that's
the starting point for SIMS - really take the lowest level sci-
entific application environment working with mathematical models
saying we don't want to deal with this data in file-orientated
terms (we want to deal with it in logical terms) and what mech-
anisms are necessary? And that's been the attempt and the thrust
of SIMS, so you can see this is only a corner of this vast field
of different data and different manipulation requirements that
show up in the scientific area.

Jim
Browne

Is there another there on the front row?

Tom For Bill also. You have plans for enhancement of SIMS and
Boos if so, what are they?

Bill
Massena

Yes, we do. SIMS is clearly in an embryonic state because
as I mentioned it's a new product developed from requirements
that sprang from the engineering or scientific world itself.
The kinds of things that we feel should be added are a query
interface so that one could go through data sets and ask for
selective information and also a stand-alone environment is
necessary to go into a data base and look at parts of it - dis-
play tables, work with the matrix data types, get out selected
information. So query interface is one of our immediate plans,
also a general purpose loader. We have, as it is now, to get
information into a SE&IS, a data base program has to do it. We
have only the subroutines interface. Systems like SYSTEM 2000
and also RIM that will be discussed later this afternoon use
generalized data loaders. This, then, would enable application
programs to prepare data in coded form, get it loaded into a

170

data base and also print it out in the same way - extract
information - like SYSTEM 2000. So those are the general kind
of plans that we have.

TOIII
Boos

Because of the discussion of a query language here, I
would like to pose a question to the,panel . . . do you feel
that query languages available meet the needs of scientific and
engineering community or do you feel that plot modules are
required for query languages which attempt to meet the needs
of the engineering and scientific data management users?

Jim Should we substitute for our query languages human
Browne interface?

TOIII
Boos

Jim
Browne

Tom
Boos

Jim
Browne

Norm
Palley

You can substitute anything you like.

I think you see, for example, in the CLINF'O system a
human interface that is well tailored to a given environment.
I presume it is, I've not used it . . .

It appeared to me to be more of a transaction-oriented
system than an ad hoc inquiry report generator. I may have
been mistaken. But that looked very much more like a
transaction-oriented system which . . .

That's why I said can we replace your query language by
human interface statement. To me a query language is only a
piece of the problem and a far more general problem of having
human interface that the application area analyst can interact
with on a natural term - on terms he understands and that are
adaptable in some ways to his problem of interface. I offered
the CLINFO comment as an example of something that looked
reasonable to me for clinicians to use. I think if you look
at the AVID system that Alan Wilhite talked about that would
be an example of an interface tailored to that specific problem
to me. Existing query languages on commercial systems are
adapted to typically that type of environment at which they
function and I would say to you they need considerable exten-
sion, particularly in the area of graphical presentation before
they are a realistic , general basis for engineering scientific
work.

Let me just say a couple of words about CLINFO. There
are really two faces to it and one is sort of a transactional
orientation. You can enter data in for a single patient for
a single time, but the other side of it, the side for which it
was really built, was to allow researchers to essentially mess
around with their data and to prepare completely ad hoc plots,
graphs, analyses, tables, whatever they wanted coming at it from
almost any direction they could imagine. The model we used for
the researcher working with this data was of a real case of the

171

Jim
Browne

guy that collected everything on little 3 by 5 cards and would
sit in the middle of his office on the floor and distribute them
in different ways, make different piles based on different vari-
ables and we wanted to be able to do something like that, to
play solitaire, so that we wanted the system to be fairly uncon-
strained and yet be do-able by non-computer sophisticated users.
We created this prompted orientation for that. Yeh.

One might point out that that system was oriented toward
the use by individuals in not so much collaboration. There are
other kinds of systems and I think that maybe you have seen some
of them where the primary aspect of a human interface is coop-
eration. You know, a communication between workers maybe who
are working simultaneously or sequentially. I have in mind a
system I was privileged to see at McDonnell Douglas Aircraft
that was based on large scale graphics where the emphasis is
really on communication. A great emphasis was between workers.

Unidentified I would like to add one other wrinkle to that that I think
panelist is an issue I tried to raise yesterday about the differences.

One of the fundamental differences between the engineering
requirement for data management data bases and the commercial
side I think is procedures. The engineering requirement for
data is so arbitrary and the sources of the data are varied
enough that I don't think we have the problem of having an item
on a data base that needs to be extracted. What we generally _
have is a requirement to create an item of information from
something that may be on a data base and that may include an
operation, that may include transformations of coordinates, it
may in fact include cutting a surface, it may include creating
the surface to be cut and coordinates to be transformed, and
then displayed. So when we talk about our requirement, I think
the one issue that didn't come out yesterday, and I was hoping
for, was this inclusion in the data base management system of
engineering procedures.

Bernard
Thomson

Bill
Massena

A question for Bill. Yesterday Dick Lopatka identified
some of the factors in a make or buy decision. I am interested,
could you identify for us what the principle factors were that
you considered, that indicated that you'd have to develop your
own SDMS.

I'd be glad to. The principle make or buy decision is the
fact that we had to deliver the system on the CDC 7600 as well
as lower CYBER machines. There is no data base system that's
currently available on the 7600 at all. On the 6000 there are
other data base products and we looked at them even without the
overriding concern of you need a product and a machine for which
there are no products. I didn't feel that the type of data
management products that were available on the 6600 would be
adequate to what I felt engineers would need to do at the lowest
level. what SDMS tries to mimic is roughly the kind of file

172

.

Jim
Browne

Jim
Foley

m!!
Browne

efficiency or the kind of efficiency that you get in file-
oriented methods, sort of a kind of mimic FORTRAN I/O in terms
of efficiency - that's why the sequential da'ta set is included.
I,t looks very.much like a regular FORTRAN block sequential .file
so that we ,get roughly the kind of I/O performance out of a
sequential :data set 'that one would get out of a FORTRAN fil.e,
The things like having .a master definition, having ,a single
definition with several data base forms or rather several
-physical da'ta bases being produced from that is a concept that
is missing .by and large from commercial data base sys.tems .because
they 'don't need it. Xf you've got a company-you only need one
personnel data base that you created at day one and you update
it and that's it. But in an engineering environment for each
project that comes into existence working on say an airplane
you're going to have different data bases logically for each
airplane that you've got, physical airplane, same form, but
different airplanes. The notion of creating data bases on the
fly but inside programs is also a foreign notion. It's usually a
a pretty complex process to initialize a data base in a commer-
cial environment. I think it's very natural that that should be
because these systems were not designed to handle modeled
objects, they were designed to handle real objects.

There was a question back over in the corner

The notion of the man machine interface, computer graphics,
the graphical presentation of information and the impact that it
has on data base designs in general. It's clear that if you want
to view information graphically, this impacts the design of the
query language or the man-machine interface. No question about
that. It seems that particularly in engineering and scientific
work even more so than in the commercial world of business data
processing we can profitably look at data graphically. There
are apparently, it seems to me, two issues involved, two kinds
of data that we look at graphically - one is the data that 'we
plot in various ways and the other is the geometric data of
which we make drawings to represent our planes and our cars and
our ,missiles and so forth. My question to the panel is., to what
-extenthave you in your design had an impact, not in the query
language, -not in the man-machine interface based on graphics and
things, but what impact is there in the inherent or intrinsic
s,tr.ucturkng of 'the data, the internal structu,ring capabilities,
the internal manipulation capabilities., the internal data
descr-iptor capabilities and these other areas internal to the
data Tbase management system, what areas have been a,ffected 'by
a need to graphically present, in the end., information.?

T :can .make -a little commen't. .Nbt fr.cm something .we've :done
but j,ust from observation and that is that basically i't wotiLl.~d
.appear that graphical 'representation of information 'requires
multiple views or ,that would be convenient. The manipulations

Norm
Palley

would be made more convenient if you are able to support
multiple views of the same data sets. That is about the most
profound thing I can find to say. Has anybody else on the
panel got their wits about them yet?

Why wait? Again I am speaking from our experience. I
can't say that the design of the data base was influenced by
the need for graphics. In fact, in our initial survey in talk-
ing to a large number of people the potential users weren't very
much aware of the capabilities of graphics and we sort of had to
subtly suggest maybe that capability would be very nice and they
should reserve judgment. It turned out they use the graphics
capabilities that we have very extensively but they are of the
first type you mentioned, that is plots, graphs, line plots. We
don't portray modeled objects very much. I guess the way that
eventually it did influence the data base is to force us to do
a lot more thinking about how we identify time in the data base
because we both have to identify it as real time, as clock time,
and also as relative time for the purposes of plotting; other-
wise you run into some complicated problems so the graphic por-
trayal also influences the kinds of retrievals that we do. If
several occurrences of an item happen within 1 hour you want to
be able to retrieve the particular one, the first one, the last
one, the average or what have you so that you can eventually
plot that data. So there is some influence backwards into the
system.

Jim
Foley

beometric kinds of graphics?

Bill
Massena

well I think your point about there being essentially the
two classes of data, namely curve plot and geometric data are
the main things people put out in graphical form. SDMS did not
consider, in particular, geometric data as specifically as the
data type in its structure. We have the vector type, we have
the matrix type. Those are suitable certainly for curve plots
because the two-dimensional capability of the table with the
additional key of providing a third dimension would then give
you the stacking three-dimensional capability, but we have
nothing to correspond to the geometric structure as for
instance APL/L?AAM has.

David
Roland

The XI0 primary use right now is on an interactive graphic
system. It's a relatively unstructured data manager so what we
have are allocated data types. We use a geometric form of
equations so each set of equations of 48 elements are a batch.
We can access any batch. The data manager lets us do that;
that's the ability to insert and delete. We can split batches
so that creates a new batch which is next to the other batch;
that's exactly the reason for the insert capability - so that
they can remain a part of a group of batches which is an object
and can be operated on as an object. We also create another

174

Jim
Browne

Margaret
White

ROY
-Jenne

Jim
Browne

type of data which is its display list. The batches are in a
real data form, in equation formats, and they have to be con-
verted into straight line vectors which have to be converted
into scaled integers and connected up with appropriate drawing
commands. We have a display list representing another data
type logically connected so that when we change a patch we
change its associated display list. And in a sense it's a
relational data base because the nth batch of each data type
corresponds to that equivalent type of data. That is, for the
5th batch of matrix 11 it is the equation, for the 5th batch
of matrix 23 it happens to be a display list of a network of
meshes, for 24 it's the edges of the batches, 25 it's cut on
the surface, so there is a relation there maintained by an
external program. This is the concept of a procedure. Now,
if we build another system that was smart enough to execute the
procedure on the equivalent data you would have a very smart
data base.

There was a comment.

In our system it was aimed basically for display purposes.
And I think it really didn't influence (rest of sentence
inaudible).

In meteorology the problems are often such that either a
person wants to analyze or display all of the data in a certain
region or globally for 1 day or a series of days to cover one
particular synoptic event, or you may want to study data from
one or several stations for anything from 5 to 50 or 100 years.
When you are talking about some of these very large data bases,
the data has to be out on mass stores or tape devices so that
you are bringing in data at least a million bits to 10 or
100 million bits at a chunk so that you have to organize the
data so that it flows through rather quickly, meaning it needs
to be quasi-serial. In that case there are times when we're
forced, in the data base itself, to double store the data to
meet two of these heavy uses without gross inefficiencies in
cutting across the data the other way.

Can I change the subject a minute and ask the questioners
down there to hold and to follow on this question so that we can
come back to the subject. I don't know if anyone but me noticed
a magic constant appearing with regard to effort level. I think
we are all interested in cost to build, to buy, how much did it
cost, what the effort is, and so forth. And yesterday after a
little discussion Carol Price came up with a number 20 to 22 man
years for VAAM and this morning Norm Palley displayed a slide
that had 2215 man years. We have something like a nearly magic
constant, plus or minus a small factor and of course in all
engineering and scientific practice there are error bars around
each measurement and only scme of us who implement software

175

I

David
Roland

really know what error bars are. But I think an. important
element is, even in some relatively more modest systems, to
try to follow up on some of these comments and ask the: panel
who have fmplemen.ted systems what they, cost and. where the
effort went. I think Mr. Palley has given us. a very good: numr
ber that I tend to believe about 85 percent of fh-e human inter-
face. Perhaps there will be other comments from the. audience:
on. this subject and; I turn again. from left to, right-.

Not sure what I am implementing. I think.XIO, itself a
third-generation system, in its first implementation at Douglas
took me about 6 months even full time to just add it to what
had gone on before, modify, and then go back and imp1emen.t it.
I did change the call statements a little so we had an overhead
there, and when I came to Ames and had to implement it on the
PDP-11 I took the opportunity, having just read "The Elements
of Programming Style," to clean it up a lot. Quite impres-
sively, too; I was impressed myself, and I thought it was good
code to begin with. To rewrite it totally, that took again
about 4 months I think, and so it's a fairly simple straight-
forward system built upon existing operating system interfaces,
so it's not a big deal. The geometry system if you will, a
query system, that uses some elements of that data structure
has about 5 man years in it now, and it's, of course, one of
these typical ongoing things. Everyone wants something new all
the time.

Bill
Massena

The work on SDMS began in the early winter of 1976 and
continued through the spring of 1977 for the major part of the
implementation. Testing went on beyond that and is still going
on. It's been essentially a solo effort (one person) for that.
length of time with other people assisting in test cases, test-
ing, things of that type. The great bulk of the work in SDMS
was really spent in design, in trying to figure out how to supply
the same type of tools that engineers or scientists are used
to in a file environment, and to transform that capability into
a program-independent data storage mechanism.

Norm
Palley

To take some data off of the slide that I already showed,
these figures are in terms of person years in essentially four
phases of the project. The first phase was the problem defi-
nition and initial design. We showed about 4 person years for
problem definition - that involved wandering around the country
talking to people trying to learn the language of the other
people in the consortium. About a year and a half for the
research plan design and another two and a half years for the
initial system design where we built essentially tissue paper
systems to try out on people, and built, actually tried some-
.thing out on other machinery, just to see if the interface would
work. The next phase was the development and testing, which
shows about 7 person years. About a year devoted to hardware
operation because we had a person doing that. The third phase:

176

4 years to system evaluation and about 2 l/2 to user support,
which meant visiting the three sites and educating people. And
then a little bit in future planning and that's where it all
goes.

ROY
Jenne

There are probably at least two or three other projects at
NCAR that are similar, in some respects to these applications .
that I would quickly guess each took perhaps in the area of 3
to 10 man years to set up these systems. where there is special-
ized aircraft data processing or when you get a second applica-
tion that uses the module, you already have the benefit of the
previous model but you don't try to design the whole system in
advance.

Jim IS there anyone else in the audience who would like to share
Browne their experiences with us. I thought there might be.

l

Dave Steve Sherman and I sat down a couple of years ago to put
Loendorf together a data management system, and I think our experiences

are similar to the ones that I have heard the panel say. We
spent probably at most, and it's gone through about 3 revisions,
a total of 6 man months to put together the system. I think one
of the problems I see happening, Jim, is that the system we have
is for our use, and it has not been documented, OK, and it does
not have security involved with it, and it doesn't have integ-
rity involved in it, and there are a lot of these little things
that we didn't put into our system which I think would probably
raise up the level of effort needed to put it on the street
much, much higher. In terms of the guts of the system I think
we had it on line in about 5 weeks.

Jim
Browne

Dave
Loendorf

Norm
Palley

You didn't even need to sit down.

NO, but I think that the problem, if you are trying to come
up with a number, is that we are talking about what it takes to
put it together for our own internal use. If you are going to
give it to someone else to use there are just oodles of little
things that they don't like that you did that need to be fixed
in order for them to use it. I think that's where these man
years of effort come in in developing data management systems.

I should say that the CLINFO system is extensively docu-
mented. There's a 300 page users' manual. We had to be able
to maintain identical software in three different geographic
locations spread around the country, and maintain everything
absolutely identical in all places, and maintain about 150
separate programs in all these places. So the documentation,
although it isn't called out as an item in the effort, was a
large percentage of every piece of it.

177

Jim
Browne

Steve
Sherman

Norm
Palley

You were going to add something, Dr. Sherman?

I would like to ask if this extensive documentation or
these extensive systems are going to be received by the users.
I know my primary experiences in operating systems when I first
got into the game. Operating systems were very small, very
simple, and all of a sudden almost overnight people developed
huge operating systems manuals, which just essentially caused
another layer of people to be used to put programs on these
operating systems. I mean they were huge. The systems were
bought for engineers or scientists or whatever, but then the
engineers had to talk to somebody who read those 300 page
manuals that could understand what was going on. So sometimes
I wonder if we don't overprogram these systems and put in a lot
of extra stuff that in particular cases is just not needed, not
used, and just thrown out?

Well, is that a question? I'll take it as a question.
Proof of pudding being in eating, the system is extensively used
where we put in the prototypes. The purpose of the manual is
not obfuscation but to enable non-computer users to open it up
at any place and if they want to see how to do a t-test it tells
them how to do it or how to enter data. It is a teaching guide
to users of the system. The guts of the internals of the thing
are not discussed and shouldn't be of concern to the end user.

Unidentified I would like to add to that. I think that the data manage-
panelist ment system certainly is a criterion and should make life sim-

pler for the user, and if they don't there is something wrong
with the data management system.

Dave
Loendorf

I have two questions back to you again; what would the man
hours have been on your system, Norm, getting rid of all the
need for the documentation? OK, just the development of the
system. I would like to put out a second point. I think that
when you start working with engineers and scientists in data
management they are going to want to get down to the guts of
the program, OK. They don't like to take systems on face value
and they are going to want to get in and find out why things
are happening and I think that is another one of the problems
with engineering data management systems. They want to be able
to change things instead of being fixed with something.

Norm
Palley

Was that addressed to me? A little conflict maybe because
I don't think we could have done it without the extensive docu-
mentation since it was a major requirement that we be able to
put out a system which could be the system that we built pro-
totypes for. It had to be, as a requirement of the contract,
extensively documented, so that someone could copy it and so
that we could just plunk it down on someone and they just run
it. Maybe 30 percent of the effort went into documentation.

178

Jim
Browne

Bob
Thompson

David
Roland

Jim
Browne

Floyd
Shipman

Jim
Browne

I don't think that that's unfair. We required documentation
because five people were working on the system and all of the
modules had to talk to all the other modules. It's hard to do
that without knowing what's in them. As far as changeability
in fiddling with the insides - that was strictly against our
philosophy. We wanted to provide a fixed, relatively fixed
tool which could be used in a flexible'manner by using different
pieces of the tool. Our customers weren't interested in modi-
fications or doing things their own way. They were interested
in getting their kind of work done in an efficient way. We did
provide extensions so that for physicians or other people who
knew how to program they could write programs and do anything
they wanted with the data. However, they could not touch the
internals of the CLINFO system.

We should probably move off of that particular area right
now and move to other questions in the audience. I can see two
arising.

For Dave Roland. He said that XI0 is available since it
was developed under contract to NASA and it states in the text
that it's for 370 .VS as well as PDP 11 RSX which I imagine is
11 N and 11 D. What is the contact point for that, what is the
distribution, and what's included in the distribution?

The contact point would be Tom Gregory in the Aircraft
Aerodynamics Branch, Mail Stop 227-2 at Moffett Field, NASA Ames,
and basically the proceedings will have a further elaboration
on the use of the system. The software itself has extensive
internal documentation describing the use of the subroutines
and the use of the arguments so that would be what you got.

On the front row.

This is more of an observation, of those people who have
software systems that have talked here, systems that have worked
and been used by more than themselves seem to have one or two
characteristics. They're either on their second or third devel-
opment, or they've spent a large percentage of the time, 50 per-
cent or more, talking with the potential customers and getting
input from them. We have a very simple-minded file information
system that we're building now. It took about 4 weeks to build;
I think we're now roughly into the third month of just having
one user go through it and say everything that's wrong. And I
think that when we are through we will have a system that people
will use and that seems to be a characteristic.

That's not a question. Thank you. You're right. There
are a few comments that one can make about maintenance costs
and revisions. The MRI Corporation which markets SYSTEM 2000
(which was actually developed at the University of Texas)

179

Joel
Snyder

Jim
Browne

employs about, I believe, 15 people full time to do mainte-
nance on that system. Of course that's your typical commer-
cial product. I mean I don't know how many people, I have
forgotten although I know at one time how many IBM had main-
taining OS and MVS, etc., but any major software product not
only has versions but is a continuing evolutionary effort on
a large scale.

Previous questions sort of touched on this a little bit,
I haven't noticed anybody speaking much yet to actual physical
security of the data. The point was made that the systems were
really debugged by the users, sort of, and I can see by the
laughter that somebody agrees with me. For one reason or
another, garbage in, garbage out, garbage goes on the data base.
There are ccanputer operations foul-ups, machines crash, hard-
ware failures, failures of operators: what do you do with large
data bases in situations like this? I have the thought of a
100 reel tape file and the 51st reel gets lost. Do you even
address problems like this? These are things that happen in
the world. I would like to hear the subject discussed a little
bit.

I can speak to it just a little bit. I once worked for
the U.S. Air Force on a system that died called the Advanced
Logistic System. The vendor for the system had neglected to
provide any such capabilities. We were called in as a system
doctor. It was a very interesting system. It could have up
to 135,844 disks and they had been planning to dump those disks
onto tape drive, single tape drive at each installation, and
it turns out that a little calculation would show that it would
take about 30 days to back up the disk files. The mean time
between failures on‘the system was about 6 or 8 hours - that
was the projected mean time before failure, where the actual
was about 20 minutes. It was some very high security require-
ments, too, because that system was going to be used to keep
track of all the nuclear weapons. One of the things we did was
to try to design the system to take care of such catastrophes.
It was a trivial effort, and it involves extremely careful
planning. Such things have to be integrated into the most
intimate fabric of the system, and it is best that you recog-
nize the requirement from day one. You find that your typical
commercial system will have built-in a number of capabilities,
audit trails, user capabilities for making extra copies. Your
commercial systems who have people who if the system crashes
will climb on their backs, if they lose data there are many
things that one can do. There is a repertoire of tricks, they
are necessary, in mature systems they are present, and they will
be present in the systems that mature in this field as they are
in the commercial field because this information is no less
valuable.

180

I
Nn~d@~ti;fi;ed! I can! second! that on another- type, of system) used! for the,
panelist bank message switch. procedures, that your BankAmericard: aufho-

ri:za.tions- and: check. clearing1 and: all that goes through. Pri-
marily it uses, and there's a lot of, telecommunications involved,
in that that they do a, lot of at each! point inI the system, tape
loggi'ng; with a full roll back capability. If a message is lost
by sa.telUi.te: between! two: stations, the: point at. which! it left
woul!di lie? ab$e! to) back up to) that point. But i.t.'s al Kg! inves,l+.
men.t in terms; of.' har:dware as. well. as software,. And1 I: don't know;
that engineeringi departments; are- ready'to' 90' for that..

That costs by the way; security costs you in: efficiency-,
it' costs you in CP time, costs you in disk space,, it's called,
redundancy and any time you have redundancy you pay. 1.t.'s: like
having three engines.on an aircraft so that if one, goes out
you're still there, and' I think it's one of those things. If
you're going to have it and you're going to rely on, these sys-
tems to help you do work more efficiently, then you will be
.prepared to pay this price in resources. to accomplish the aim.

Jnidentified There is one other thing though I think you might have been
questioner discussing - the problem of hamming code type of error correc-

tion that happens. If you can code your file with additional
bits you can detect the errors if they are there which in itself
can be a big help, and the other thing would be to possibly
correct those errors. That is a subject of computer science
right now.

>inds
:'i$schner

I-avi;dl
coTand>

Now I think that speaking out of pure logical data, most
of the important sets are backed up in one way or another. Say
the ones we have either within our own organization or in some
other organization of the country. Another concern is just
knowing when the data does go bad and it concerns me that the
current systems are really getting more complex on the inside
with many many paths and it seems like the requirement should
be m know when a record or block or file or whatever has in
fact been changed fran the time that it was delivered to the
data base. In the case of our mass store we usually put a
checksum on the whole volume to make sure not only that each
larger record is preserved the way it was, but also that the
whole volume contains everything that it first had, in it.
Often, in the, programs there is also checksum checking record.
by record when it gets back in the main memory.

We talked a little about systems of handling really large
amounts of data. How much' data will systems like SDMS and: X10>
and also. some of the commercial packages, if anyone has had
experiences with. them, handle realistically before you' start
getting into performance problems.

I can answer for XIO, we use a' halfword! for the record'
number so we're limited to, 32,OO'O without going to. plus, or

188

Bill
Massena

Jim
Browne

Bob
Fulton

minus, offsetting and, of course, word sizes we could double
to 32 bits. It wasn't designed for mass store.

A particular application generates files on the order of
10,000 64-word sectors, and that to translate into word terms,
6 million words, that would be 10 characters per word, so that's
like 60 billion characters for a single application. Of that,
interestingly enough, only 700 sectors out of the 10,000 are
in fact data that's worth keeping around after the program
completes. This is typical in engineering or scientific
application - that they generate large volumes of data which
only perhaps 10 percent or somewhat less is in fact of sub-
sequent interest.

The typical commercial systems have variable limits. I
have seen for example SYSTEM 2000, little updated data bases
of the order of 100 million characters. They're typically not
designed for very large data bases. That's a special subject.
If there are no more pressing questions; there's a pressing
question.

Before you break for lunch, I just wanted to comment for
those that are not aware, the IPAB project has been progressing
and some accomplishments that have not been discussed here, are
in fact in the wind and are coming out. We plan a review of
that project in September. Some of you will automatically
receive invitations to it, those that are involved in the
advisory capacity. But if there are people who are interested
in being invited to that, there may be space limitations, but
we intend if we can to accommodate a few people to attend that
meeting scheduled for early September in Seattle, and so for
those of you that might be interested you should direct a
request to the Langley Research Center, to the IPAB project
office. We have purposely not tried to give you a status
report on the project here. The purpose of this meeting is
engineering data management, and so many of @he questions that
relate to it we have purposely dodged. We didn't think it
was appropriate to essentially spend all the time at this
program to tell you about the status of the project. But
there will be a project review in September for anyone who
is interested.

182

RlM- A Prototype for a Relational Information Management System

Dennis L. Comfort
Wayne J. Lrickson

Boeing Computer Services Company

The purpose of this paper is to'present an overview of the
relational information management (RIM) system, RIM is a
prototype data management system developed by members of the
computing staff of the Boeing Computer Services Company asslyned
to the Integrated Programs for Aerospace-Vehicle Design (IPAD)
project.

In the development of a system as complex as IPAD, there is
the possibility that although the basic user requirements are
satisfied, the end result is a system which is unacceptable to
the users. This problem stems from not encouraging interaction
of design ideas between the users ad system designers. For
example, a query facility might be developed to access the data
base which will out perform clrly other query facility both in
response time and user capabilities, However, for the user to
ccmprehend it, a PhD in mathematics may'be required. h
successful system must be "user-friendly." The interaction of
the systems designers and users throughout the design process is
one way.of assuring that proper user input is supplied so as to
minimize the chance of developing a "user-nasty" system,

One of the primary reasons for developing RIM was to allow
the users to gain familiarity with a relational data management
system so that some feedback could be gained as to whether a
relational user interface would be conducive to the engineering
environment. A second mtivation for developing RIM was to allow
the IPAD computing staff to gain this same familiarity with a
relational system. This interaction would enable the staff to
analyze the applicability o;t a relational approach to the IPAD
system design. The final purpose in developing RIM was to
investigate how well some of the IPAD data management
requirements could be satisried using a relational approach,

Many of the IPAD data management requirements are
significantly different f ram those requirements satisfied by
commercial data management systems.. Some of these requirements
imply a need for 1) the capability to create and modify data
element definitions and relationships "on the fly" without
recompiling the schemas or reloading the data base, 2) the
capability for the user to define new data types (point, line,
sphere, etc.) for use in special applications such as graphics,
and 3) an integrated data dictionary/directory system which will
maintain directories for all IPAD data. The reader is reminded

183

that RIM is only a prototype and it is not intended to sa:tisfy
all of the IPAD data management requirements.

RIM is currently implemented on a CDC CYPER 1'12 computer
running under the NOS I.2 operating system. The RIM software-

.consists of approximately 5000 lines of FORTRAK code. In.
addition, there are some library routines used from.existing!
Boeing. systems, RIM and: the associated library xou;tines require
approximately 50,000 octal words of mati memory to' load on the
Cyber 132. RIM is operational as an integrated system with its:
own data definition, data manipulation, and q-uery languages. It
also supports a FORTRAN interface using subroutine calls, Roth
of these modes of operation are available in the batch and
timesharing environments-

The remainder of this paper discusses the capabilities and
syntax of the data definition, data manipulation, and query
commands. The information contained within this paper assumes
that the reader has a basic knowledge of relational algebra and
its use in data management,

General Syntax

RIM commands support the following characteristics and
capabilities:

* All cormnands begin with a verb (e.g., DEFINE - c .,
SELECT . . -1

* All commands are entered in a free-field format

m All kemrds, names, and data values are separated by
blanks

. All keywords, relation names, and attribute names must
be from 1 to 10 characters in length

w Commands may extend over several lines of text with the
restriction that no command have more than 250
keywords, names, and data values

. A user may "re-useR all or part of the previous RIM
command entered

m Multiple commands may be entered on one line

18.4

Given the command, SELECT AU FROM AlRPLANES, the following are
all equivalent:

* ,SELECT ALL FROM +
AIRPLANES

e SELECT ALL+
FROM IAZRPLANES

. *ALLFROMAIRPLANES

L *3 AIRPLANES

. SELECT *2 AIRPLAZJES

Note that a plus (+) sign is used as a continuation character to
the next line of text- The asterisk (*) tells RIM to use all or
part of the previous command. For example, a *2 says to use two
of the mrds in the last command; ijl * or *l says to use one word;
and, a ** says to use all of the previous command.

If a user wishes to enter multiple commands on one line,
then these commands should be separated by a dollar siyn (3) as -
shown below:

SELECT ALL FROM AIKPLANES $

The RIM Data Definition Lanquaqe

RIM currently supports three

TALLY MFG FROM AIRPLANES

data types: floating point or
real, integer, and text, If an attribute is to be used as a key
for query or manipulation purposes, the user may denote it as
such by typing the word KEY in the definition, However, the
notation of KEY in no way affects whether an attribute may be
processed as such, The user indicates the end of a definition by
typing either another UWINE command or an E3NG command.

EXAMPLE:

DRFINE AIRPLZUES
MODEL TEXT KEY
WEIGHT REAL
NUMPASS INT
DRFINE PEOPLE
NAMETEXTKEY
AGE INT

185

The RIM Data Manipulation Lan~.~g~

The RIM data manipulation language is used to provide
alternate views of data to the users by manipulating one or more
relations. The user has the capability to project, intersect,
join, and subtract relations. Each of these will be discussed
separately-

PROJECT

The function of the PROJECT command is to create a new
relation from an existing relation, The user may wish to change
the old relation by removing attributes, renaoving tuples,or
removing both. The syntax for the PROJECT command is:

PROJECT newrel FROM oldrel USlNG attributel.,.attributen +

(WHERE condition-.-.-)

Up to five conditions may be combined using the Boolean operators
of AND and OR, Each condition may be one of the following forms:

attribute EXISTS
attribute EQ value
attribute NE value
attribute GT value
attribute GE value
attribute LT value
attribute LB value

Conditions are ctiined from left to right-

Assume the existence of the following relation:

The
followed

EME'DATA

EMP-NUM EMP-NAME SALARY SEX

1516 JOHNSON 18000 M
2171 JCRAFT 15000 M
218-l WELLS 29000 F
3000 KAUFNAN 8400 M
3500 NORTH 10500 M

following are valid YROJLCT commands. Each command is
by the resulting relation,

186

PROJECT Tl3MF'1 FROM EMPDATA USING EMP-NUM EMP-NAME SEX

TEMPl _

EMP-NUM EMP-NAME SEX

1516 JOHNSON M
2171 KRAFT M
2181 WELLS F
3000 KAUFM? M
3500 NORTH M

PRCJECT Tl+lP2 FROM EMPDATA USING RMP-NZRJ

WHERE SEX EQ F

TkMP2

I 1 EMP-NAME SALARY SEX +

.
EMP -NUM EMP-NAME SALARY SEX

2181 WELLS 29000 F

PROJECT TEMP3 FROM EMPDATA USING EMP-NAME SALARY WHERE +
SALARY GT 12000

TEMP3

I EMP-NAME SALARY

I JOHNSON 18000
KRAFT 15000
WELLS 25000

The PROJECT command is very useful in reducing the size of
relations when only a subset of the data is to be accessed.

INTERSECI'

The function of the INTEHSLCT command is to allow the user
to combine the tuples of two relations into a third relation
based on some set of specified attributes. The syntax of the
INTERSEm is

I.NTEKSECT relnamel WITH relname2 FORMING relnam3 +
USING attributel...attributen

187

As an example, let us assume that the user has
two relations defined with the associated tuples:

REL-1 REL-2

the following

AT-l AT-2 AT-3 AT-2 AT-3 AT-4
,

A 1 D 1 X
C 5 3 9" Y
I? 3 i 3 Q X
2 6 G \

The user may INTERSECT two relations on a specific set of
attributes (the USING clause),
the common attributes.

or allow the system to identify

In the first case, suppse the user wishes to INTERSECT the
two relations on attributes AT-2 and AT-3. Then the command for
this would be:

INTERSECT REL-1 WITH REL-2 FORMING REL-3 USING AT-2 AT-3,

The result would be the new relation REL-3 shown below:

REL-3

Note that the tuple (3-Q) appears only once in REL-3. This
is because duplicate rows are not permitted in a relation. Note
also that by specifying which attributes the intersect is on, the
user restricts the number of attributes in the resulting relation
to those specified in the USING clause.

In another case, the user may not know which attributes are
common in the two relations. In this instance, the user would
type:

188

INTERSECX' REL-1 WIm REL-2 FORMlNG R,EL-4:

The result would be REL-4 consisting of attributes AT-T, AT-.
2, AT-T, and AT-U, shown below with the restiting tuples:

I
A t I? F

1
3
3

JOIN,

The JOIN command is a binary kunction operating o,n two
relations to form a th>ird reiatun. The purpose of this conumnd
is to join two relations based on ti specified attribute from
each,. The result of the join is a third relation mntaining a11
of the attributes from Do.th relations- Tuples are generated into,
the new relation based on a specified Boolean cond-itior,, The
syntax of the JOIN command is:

JOIN relname-1 USING attribute WITH relname-2 +
Ia

USING attribute F’ORKLNG relname-3 WHERE LT
GT
GE
EQ
NE

As an example, consider the relations, EMFDATA and BOSSDATA.

EMPDATA

EMPNUM EMPNAME EMPSAL liMPSEX SUPERVISORl

2181 SMITH 29000 F SIMMCNS
2171 JONES 15000 M SIMMONS
1516 ADAMS 18000 M WALKER
340.0 BROWN 12650 M SIrnONS
3600 WILSON 32651 M s xMr~oIKs

BOSSDATA

I BOSSNUM BOSSNAMl3 POSIT1ON. BOSSPROJ YRS-CO~ 1

I. 5700 SIMMONS ASST-MGR MFG 15
8000 WALKER MANAGER PAYROLL 35 I

189

The following JOIN would produce the result shown in
relation EXAMPLE in f.igure 1,

JOIN EMPDATA USING SUPEPXISOR WITH BOSSDATA USING BOSSNAME +
FORMING EXAMPLE

Unless the user specifies fcir the Boolean condition to be
other than EQ, the comparison test between the relations will be
based upon equality, Note that omitting the WHERE clause forces
the JOIN to default to WHERE EQ-

The JOIN will function correctly on any comparison providing
that the user compares attributes of the same data type. All
attributes in the resultant relation (i.e., EXAMPLE) must be
unique in order for the user to obtain accurate results when
using the QUERY or MODIFY capabilities. Non-unique attributes
can be changed (by the user) utilizing the RENAME command.

SUBTRACT

The SUBTRACT command operates on two existing relations to
produce a third relation, The function of the command is to
identify those tuples in the two target relations which differ,
given a specific set of attrrbutes, The syntax of the SUBTRACT
command is:

SUBTRACT relnamel FROM relname2 FORMING relname3 USING +

attribute1 attribute2...attrlbuten,

As an example, assume the existence of the following two
relations-

EMP-DATA VACATION
.

EMP-NUM EMP -NAME JOB-TITLE EMP-NAME LENGTH DUE-BACK
/

1500 WILLIS KEYPUNCH CROSS 2 JAN 10
1775 CROSS ENGINEER KRUMP 3 FEB 24
3217 DANIELS MAINTENANCE ISAACS 1 SEPT 6
3504 BURNS TEACHER

The following commands are valid and would produce the
results shown-

190

.

SUBTHACT EMP-DATA FROM VACATION FORMING VAC-1

VAC-1

I EMP-NAME LENGTH DUE-BACK

KRUMP i 3 FEB 24
1SAACS 1 SEPT 6

SUBTRACT VACATION FROM EMP-DATA FORMING VAC-2 USING EMP-NAME

VAC-2

Note that the USING clause restricts the contents of the new
relation to those attributes appearing in the USING clause. If a
USING clause is omitted, then tile resulting relation contains
those attributes appearing in the second relation (relname2).

The RIMxuery Lanquaqe --- ---

To use the hIM query languaye the user must first type QUERY
to signal RIM that all comer ands to follow are query commands.
The user exits this query facility by typing, EXD.

SELECT

7'0 print all data from a relation, the user types

SElXCT ALL FROM relname

This command will list all attributes of the relation with all of
its tuI,les. The user may restrict which attributes are listed by
specifying the desired ones as shown below.

SELECT attribute1 attributei...attributen FROM relname

The user may further restrict which tuples are selected through
the use of the WHERE clause and the Boolean operators of AND and
OR. Conditions are combined from left to riqht.

191

I

The &dllowiny 5xzcxmnad can.be used to .print selected
;a.ttributes from .a .celation where certain conditions are -met:

SELECT 8att!tributef .atQ5bute2,...attributen FROM relname +
'WHERE condition AND condition,..

OR

,T!he output from the SELECT command can be sorted by specifyin9.a
sorting ,attribute. The sorting order ,is fram low to high.

SELECT c * I FROM relname SORTED by attribute
SELECT . - w FROM relname SORT&D by attribute WHERE . . .

TALLY

To print a tally for an attribute giving each unique value
and the number of times it occurs in a relation:

TALLY attribute FROM relname

NEWPAGE

The NEWPAGE command is used to control paqe spacing for
batch printing of RIM output by causing the line printer to eject
to a new page prior to executing the next command. The user
types REWPAGE to invoke U-US- feature.

EXAMPLE:

SELECT ALL FROM AIRPLANES
SELECT MODEL FROM AIRPLANES
SmECT ALL FOR AlHPLAN!S WHERE WEIGH‘T' GT. 700000.
*-8 AND NUMPASS LT 200
SELECT AGE FROM PEGFLE WBERE NAME EQ BOB
NEWPAGE
SELEX.3 ALL FROM AlRPLANES SORTED BY XODEL
TALLY NAME FROM kl%XPLE
.m

:The RIM Modification Lanquaqe

RI34 .also %permies the user to perform updates on the relation
definitions and the associated data, To do this, the user must
t,ype CMODIFY so tha-t RIM will know to expect update commands. The
.user ;may change data values, attribute names, delete tuples, and
,delste entire relations.

CHANGE

To change the value of an attribute in a relation where
certain conditions are met, the user must supply the relation
name, the affected attribute and Its new value, and any required
conditions. The syntax for this 1s:

CHANGE attribute EQ value FROM relname WHERE condition1 +

AND condition2..-
OR

RENAME

To change the name of an attribute in a relation:

RE- attribute1 EQ attribute2 FROM relname

The old name is attributet. Ttie new name is attribute2, To
change the name of an attribute in every relation that contains
it:

RENAMR attribute1 EQ attrlbute2

RkM0V-E

To remove a relation definition and its data from the data
base:

REHOVS relname

To delete selected tuples from a relation:

DELETE TUPLE FROM relname WhERE condition1 AND condition2,..
OR

The user signifies to RIM the end of the update commands by
typing END.

193

I

EXAMPLE:

MODIFY
CHANGE NUMPASS EQ 320 FROM AIRPLANES WHERE MODEL EQ 747SP
CHANGE NAME EQ ROBERT WHZRE NAME EQ BOE
RENAME MODEL EQ VERSION FROM AIRPLANES
RE.'NAME NUMPASS EQ CAPACITY
DELETE TUPLE FROM AIRPLANES WHERE MODEL EQ DC9
REMOVE PEOPLE

In addition to being able to query and modify relations, the
user is also able to query the RIM dictionary which maintains
data about all existing relations in a data base. If a user
wishes to see a list of all defined relations, the user types:

LISTREL

The user may wish to see the definition of a relation and
may do so by typing:

LISTREL relname

Using LISTREL in the latter example also provides a count of
the number of tuples existing for that relation.

The EXHIBIT command is used if the user wishes to know which
relations contain a specific attribute or a set of specific
attributes, The format of this coxrunand is:

EXHIBIT attribute1 attribute2.,.attribute.N.

Utility Commands

There are several utility functions which may be performed
by the user. Two of them, LOAD and EXIT, are required, while the
others are optional.

The LOAD command is used to load tuples into a newly defined
relation or to add tuples to a relation which already contains
data. m load a relation, type:

LOAD relname

The user may now load data in the relation, one tuple per
command, by entering data values in a one to one correspondence
with the attributes

value1 value2 .- - value3

194

To finish data loading the user enters:

END

The loading of a relation is terminated by another load
camnand or an END comtind,

EXAMPLE:

LOAD AIRPLANES
DC9 87000, 110
747SP 200000. 350
LOAD PEOPLE
BOB 10
JOE 12
ALICE 9
END

The EXIT command signals RIM to close the data base files
and return control to the operating system, To use this, the,
user types EXIT,

Conclusions

The IPAD team gained a great deal of useful information as a
result of the development of the RIM prototype, From the system
design point of view, it provided the team with insight as to
sane possible ways in which to satisfy the IPAD data management
requirements, The relational model, upon which RIM was based,
provides the flexibility in information processing required in an
engineering/design type environment. kom a user point of view,
valuable input was received from the engineering staff regarding
the usability of the relational approach, Users were pleased
with the flexibility and ease of use of RIM, although there was
sane concern as to the "user friendliness" of relational algebra,
User feedback indicates that it would be desirable to have a
relational calculus interface to the data management system-

It is this interaction with users that is vital during the
design phase of a system such as IPAD, This user input provides
insight to questions such as "what would we do differently if we
were to build a DBMS again?-. Furthermore, the interaction
between designers and users minimizes the probability of
producing a system which is unacceptable to the users-

RIM is currently being used by the IPAD staff to monitor the
design of the IPAD system. In addition, it is being used in the
configuration control process of the project,

195

EMPNUM EMPNAME EMPSAL EMPSEX SUPERVISOR BOSSNUM BOSSNAME POSITION BOSSPROJ YRS-CO
I

2181 SMITH 29000 F SIMMONS 5700 SIMMONS ASST-MGR MFG 15

2171 JONES 15000 M SIMMONS 5700 SIMMONS ASST-MGR MFG 15

1516 ADAMS 18000 M WALKER 8000 WALKER MANAGER PAYROLL 35

3400 BROWN 12650 M SIMMONS 5700 SIMMONS ASST-MGR MFG 15

3600 WILSON 12651 M SIMMONS 5700 SIMMONS ASST-MGR MFG 15

Figure l.- Example.

XJMMARY

'IL%% paper defcnes .and ~illustrates w%th examples .a data management
sys:tem,whose ,data elements and relationship definition capabilities 'are
explXc$MLy tai$oned to #the needs of engineering ,and'scientiffc computing.
Syshem ,desZgn was based upon studies of data 'management problems currently
be5ng handled 8through ,expliicit programming. 'The s.ystem-defined data element
'types iinclude real scalar numbers, vec'tors, arrays and spec'i-al classes of
arrays such as sparse arrays and 'triangular arrays. 'The data model fs
h2erarchZcal '(tree structured). Multiple views of data are provided at two
levels. Subschemas provide multiple structural views of the total data .base
.and multiple mappings for individual record types are supported through the
use of a REDEFINES capability. The data definition language and the data
manipula,tion language are designed as extensions to Fortran. Examples of the
coding of real problems taken from existing practice in the data definition
language and the data manipulation language are given.

DATA MANAGEMENT IN ENGINEERING AND SCIENTIFIC COXHJTING

This paper is the product of a projec't to analyze eng'ineerfng and
scientific computations for data management needs and to design a data manage-
.ment system to meet these needs. This project was conceived with -the concept
that sur5h needs existed.. The concept of need has been corroborated and fhe
rec.o,gnition of a potential value of such a system has greatly expanded in the
,few months ihat wa have been working on this project. WF‘ have developed
f.am?i.liarity with data managemenlt need,s in scientific and engineering computa-
tion through study o$ the literature [Hirchsohn, 1971 and Bandcrsk4 and
,J,e+f:E.erson, Egasa,, lg7Sb] and through interviews with the stayf at NASA Langley
%esear2% !Cen:tser whose work involved data management programmiing. 'The first
sZ.s&t SD iLangLey Resear(ch Center to co,%%ect &nformait+ion on data management
3awds was ih Octh3%xer <o% X977.. We feound fZve pzoij:ecks 'in32eresVed 'iT1 dkcussing
il5heii.r T&&a manqementt nee&s w%th US.. iWe returned +n Mar& o,f Ll978. %7e then
57imd ttem pm@ec;ts iiin;teres*ea fijj &i.sc~usstimg ItheLr datia managementt work w3tLh
ass-, ama :a t%meedkry +Lsikt expared before we were abEe %o complete Znterv%ews
w&t& ALI. dE i&e 3mteresited iparties~. Qoordn and ass!istance mamas mded
Iby iI!lqd !EiMgmaq ti hrs ?f.x=an .essddl its x-h proWlmu ~de~fiinCt%on ,process..
l&e ,mw C&E h-t ;ar za-q@q m&e msgement ,oE itind me1 'data, cm-
mum &a ibbasas &xr ~regramming sys!tems,, ithe pass!Lng 104 data between elantents

of programming systems, air pollution data analysis, equipment characterization
for system design, image data, aircraft noise data, and several cases of geo-
metric data in application to preliminary and detailed design. Many of these
projects have created a data management capability to meet their specific needs.
Each has re-created a portion of existing technology. Each has had to create
the necessary technology through the awkward meaqs of explicit programming in
Fortran, a language not well adapted for data definition or data manipulation
tasks. Some of these development efforts have required up to several man-years
of effort. Each project is incompatible with the others and there has been no
possibility for overlap or exchange of programs. The purpose of this project
was to define a capability for executing these tasks in an economic and cost-
effective means through a common data management system for engineering and sci-
entific data bases which would be embedded as an extension to Fortran.

CHARACTERIZATION OF NEED

The following characterization of engineering/scientific data management
needs arises from our admittedly as yet incomplete analyses of these require-
ments.

1. Real numbers and bit strings are required as elementary data items.
System defined data types should include vectors, arrays and special types of
arrays.

2. A high update rate commonly occurs, yet it is often the case that data
after being used several times, may need to be kept in unaltered form for
from one to ten years.

3. Structural relationships among data elements seem characteristically to
be static within an application.

4. Most structural relationships we encountered are readily expressed in a
hierarchical (tree structured) data model. .

5. There is a substantial need for complex retrievals as a support for data
analysis and design studies.

6. There was a substantial interest in and request for interactive access
to data retrieval and analysis capabilities.

7. There may be a need for defining multiple structural relationships
within a set of data elements and across a data base.

8. Efficiency of execution is required. Data handling is often a rate-
determining step in large engineering and scientific computation.

This set of characteristics is reflected in the design presented subse-
quently. We must emphasize that we are aware of the shortcomings of our inves-
tigations. We particularly feel that we have an inadequate set of examples on

198

the types of data management support required for graphics processing [Williams,
1971, 1974; Valle, 1977; Joyce and Oliver, 19761. It should be noted that
several existing commercial data management systems have some of these
characteristics. None has a large or adequate subset of the requirements.

SYSTEM DESIGN

The design goals were to produce a system which is:

as simple as is consistent with the problem characteristics and con-
straints listed as items-l-8 above.

as natural an extension of Fortran and engineering/scientific computing
practice as possible.

capable of effectively supporting both the computation and analytical
aspects of data management requirements.

The design procedure was to formulate example data management problems
from Langley Research Center and the literature in terms of possible data
models and associated data definition language (DDL) and data manipulation
language @ML). The effectiveness and simplicity with which the data model,
DDL and DML fit the problem set were used to modify or alter the system
design. The next few paragraphs summarize thet outcome of those studies in
terms of the several basic data models. Readers not familiar with data models
and data management technical vocabulary are referred to one of the standard
textbooks for background material [Martin, 1975; Date, 19751.

The basic data models are relational [Codd, 19701, network [DBTG, 19711
and hierarchical [Martin, 19751. The relational model has appealing conceptual
simplicity. The view of data as a set of tables (Erelations) is natural to
engineers and scientists. It also has the powerful feature of dynamically
supporting the generation of new logical data structures. It has the drawback
of great difficulty in efficient implementation. It was further the case that
the set of examples we encountered had little need for dynamic creation of
logical data structures.1 Hierarchical data models are a subset of network
data models where logical structuring is confined to trees (parent-child rela-
tionships only). The choice between a network model and a hierarchic model
hinges on the presence of need to express relationships more general than
trees. We found no such requirements in the set of examples with which we
worked. A hierarchical data model thus appears of adequate power to formulate
a large set of the data management problems of engineering and scientific
computations. There are specific advantages to the hierarchical data model.
It can be readily added to Fortran as an extension. The logical abstraction
will be familiar to the potential engineering and scientific users. The

IWe frankly suspect that our perspective on this problem was limited by lack
of contact with graphics data base applications. We anticipate further
analysis of this. problem area.

199

.-
structured simplicity of the hierarchic model will be an aid to effective
data base design and use [Dale and Lowenthal, 19761. The DDL can express all
possible logical relationships by physical contiguity, thus simplifying data
base design and coding. Procedures for efficient implementation of hierarchi-
cal models with conventional data elements are well known [Martin, 1975; Date,
19751 and thus provide a starting point for an efficient implementation utili-
zing the more complex and bulky data elements of engineering/scientific com-
puting. It is further the case that adding structured data types such as
arrays to the elementary system defined types allows the implementation of the
dynamic logical structures of the relational model with a minimal amount of
user programming. The.next section defines, describes and illustrates the
data management system we propose as appropriate. We do not claim that this --
is a definitive statement on data management for engineering/scientific com-
puting. We do claim it to be a much needed first step towards formulating
data management requirements for this very significant problem domain. The
system design given here is a minimal design. We have not defined nor do we
intend to define in the near future utility features such as report generation
or file conversion.

CHARACTERISTICS OF THE PROPOSED MODEL

Since Fortran is the major programming language of scientists and
engineers, the proposed data management system is designed as an extension to
Fortran. The system will be implemented by a preprocessor to translate the
data base management statements to actual Fortran subprogram calls and storage
allocation statements and a set of Fortran subroutines to implement the
functionality of the data base system. The system consists of two logical
elements -- a data definition language (DDL) in which to declare data types
and logical relations among data and a data manipulation language (DML) which
provides a means for update and retrieval of data base elements. BNF descrip-
tions of the data definition language and of the data manipulation language are
given in appendixes A and B. DDL and DML statements will be distinguished from
Fortran statements by a "*D" in columns 1 and 2.

Data Definition Language

One of the major considerations in the design-of the data description
language was to keep the syntax concise and palatable to users of Fortran.
Furthermore, since the system is to be used in scientific and engineering
computing, all of the major elementary data types of Fortran are allowed --
bit strings, floating point, double-precision, and complex. The data elements
allowed by the DDL also include those of Fortran (scalars and arrays). Two
additional structured types (groups and records) are introduced which facili-
tate representation of multi-level hierarchical relationships.

Certain special array types are allowed in the DDL to provide compact
storage for different classes of sparse arrays, such as symmetric and banded,
and to allow alternative addressing functions for arrays, such as column-
major rather than Fortran row-major,representation.

200

The record and group structured types are new to Fortran programmers.
Records and groups allow definition of relationships among data elements of
heterogeneous types, rather than the relationships among scalars of -homogeneous
type allowed by Fortran arrays. Records, for instance, are made up of collec-
tions of scalars, arrays, or group-types. Groups are composed of scalars,
arrays, or other group-types.2 The data description language, therefore,
represents a data base as an abstraction composed of a set of logical record
types, each of which is composed of scalars, arrays, or group-types. The
recursive definition of groups furthermore allows specification of multi-
level hierarchies.

The record and group-types are themselves data abstractions. There are
generally many occurrences of a single record type within a data base.
Similarly, there may be many occurrences of one group-type within another
record or group occurrence. Thus, one feature of the record and group declara-
tion is the presence of one or more single scalar data items whose values in
each occurrence of that record or group-type uniquely identify a particular
record or group occurrence (=a key). The keys for each record or group pro-
vide a means of directly accessing an occurrence at any level by the specifi-
cation of appropriate keys and key values at each level.

The possibility of multiple group occurrences necessitates another
feature of the group declaration; the specification of the maximum possible
number of data elements of a particular group-type which will exist in the
data base. There is no requirement that the maximum number of occurrences
specified shall even be attained; specification is recommended to alleviate
storage overhead and allow maximum efficiency.

Another feature of the DDL is a limited ability to define multiple
structural relationships on one set of data items. This is accomplished
through the use of the REDEFINES clause in a group-type declaration and allows
application of more than one address mapping to the same set of data. It
might be convenient, for instance, to represent an array in two different ways
at different places in the data base hierarchy. In one group the array might
be defined as a 2-dimensional array and in another place the array might be
represented as a group-type, each of whose occurrences is one vector of the
array. REDEFINES, however, is somewhat restricted to allow a certain degree
of efficiency. The occurrences of the group-types being redefined must have
a l-to-l correspondence, and the data in one occurrence of one group being
redefined must be the same data as the corresponding occurrence in another
group. The REDEFINES clause can also be applied to elementary system data
types.

The DDL also provides external schema capability to partition a data
base and to provide multiple structured views.

One other feature of the DDL is the ability to provide data base protec-
tion at the logical record level. For each logical record in the data base it

=-- ~=- .i-. .-- -,-.:_ _. -- -_-.--~_
2 Groups are logically identical to records except that they can be hierarchi-
cally nested.

201

is possible to specify which users are allowed read-only or write access to
that record type. It is also possible to declare the record public in a read-
only or write mode.

I Sample Data Base Declaration

The use of an example data base consisting of hypothetical wind tunnel
test data will help illustrate some of the ideas discussed above. A wind
tunnel test comprises some number of test runs within which certain test
parameters may vary. Each test can be identified by a test number and the
wind tunnel facility where the test was made. Each run is made up of a
number of points, or parameters which characterize that run. Each point is
identified by a name and a value. Several similar wind tunnel tests may be
associated into test groups based on some qualification or relationship among
the tests. Thus, each test group may be composed of several tests, each of
which is composed of a number of runs. Each run is in turn composed of many
points. The record and group occurrence structure for a wind tunnel data
base may logically be represented as in Figure 1. Since the 3-dimensional
qualities of a data base are quite difficult to represent in this way, the
data base structure is usually represented by a tree graph, Figure 2, which
represents an abstraction of Figure 1.

Figure 3 is an illustration of how the wind tunnel data base would be
represented in the DDL. Here the wind tunnel test hierarchy tree is repre-
sented by a nested block structure. The highest levels of the hierarchy are -
represented by the outermost blocks, while the lower levels are represented by
the inner blocks.

Each data element is defined by a name and type declaration. The name of
a declared element appears to the left of the colon and the type to the right.
Each record or group-type declaration contains specification of key items.
The keys for record type TEST are TESTNUMBER and FACILITY, since the values of
these two keys uniquely identify a particular test.

Scalar types can be specified in two ways. If the length of the scalar
is known, its type and length can be specified similarly to a Fortran FORMAT
specification. For instance

description : A:50

specifies a string of 50 characters or

testnumber : KEY I:4

specifies a 4-digit integer. If the length of the data element is not known
or not significant to the application, the type can be specified by reserved
words REAL, INTEGER, etc., as

value : KEY REAL

202

The maximum number of occurrences of group-types are specified by
brackets within the GROUP declaration. For instance

run : GROUP [200]

declares a group-type called RUN, and the maximum number of.occurrences o ti RUN
is 200.

Data Manipulation Language

The data manipulation language (DML) provides a means of retrieving and
updating the data base from within a Fortran program.

DML Retrieval Statements

Three types of statements are allowed for retrieving groups and records.

1. GET FIRST Statement

The GET FIRST statement retrieves the first occurrence of a specified
record or group based upon certain key value qualifications specified at each
level of the hierarchy.

.2. GET NEXT Statement

Once the GET FIRST statement has been issued for a particular record or
group, a GET NEXT statement may be issued for that same record or group-type
to retrieve the next occurrence which fulfills certain qualifications based
on key values.

3. GET NEXT WITHIN

GET NEXT WITHIN is similar to GET NEXT. However, a GET NEXT statement
can retrieve any occurrences of a group or record type across parental bounda-
ries, while GET NEXT WITHIN only retrieves occurrences within the parent group
or record type specified. The parent record or group occurrence for a GET
NEXT WITHIN statement is established by a previous GET FIRST, GET NEXT or GET
NEXT WITHIN statement.

The level at which data retrieval is desired is specified through the use
of a dotted notation, and particular occurrences at each level are selected
based on key values.: Some examples of retrieval statements using the wind
tunnel test data base are shown below.

Example 1

Perhaps the user of data base TESTGROUP wishes to extract one run number
from a particular test. This can be done via the following GET FIRST statement:

203

*D GET FIRST test(testnumber = NTESTAfacility = IFACIL).
run(runnumber = NRUN)

The particular test desired is specified by the qualifications testnumber =
NTEST and facility = IFACIL, where NTEST and IFACIL are Fortran variables
containing appropriate values for test number and facility. The period after
the test record occurrence specification signifies that the retrieval will
descend to the next level of the hierarchy. At this second level, the group-
type RUN is specified and the particular occurrence of RUN desired is the first
one with RUNNUMBER equal to NRUN.

Example 2

For some applications it might be desirable to select all point values
over the entire TESTGROUP data base for a particular point name. This can be
done by using the GET NEXT statement in conjunction with the GET FIRST state-
ment:

*D GET FIRST test.run.pointset.point(name = 'ALPHA' A
value XMm

JcD 10 GET NEXT test.run.pointset.point(name = 'ALPHA' A
value 5 XMAX)

GO TO 10

This loop extracts all points named ALPHA where the point value is bounded by
XMAX. No qualification on key values is given for the higher level records
and groups. When this is the case, the first such record or group name found
in the data base is selected.

Example 3

In a particular application, it might be desirable to extract specified
point values, but only from one run rather than from the entire data base.
This can be accomplished with a GET NEXT WITHIN statement as follows:

*D GET FIRST test.run(runnumber = NRUN).
pointset.point(name = 'ALP'HA' A

value4 XMAX)

*D GET NEXT pointset.point(name = 'ALPHA' A value s XMX)
WITHIN test.run

GO TO 10

Here, the same type of point values are selected from the data base. However,
the extraction is limited only to those points whose parent in the tree-graph
is the first RUN group occurrence where the run number equals NRUN.

204

DML Update Statements

DML update statements provide a way of adding, deleting, or changing
record and group occurrences. The level at which information is to be updated
is specified by dotted notation, just as in retrieval statements. Also, par-
ticular occurrences are specified through key values.

Example 4

*D ADD test(testnumber = 100 A facility = 'xyz').
run

This statement adds a run group occurrence to test number 100 at facility xyz.

Example 5

*D DELETE test(testnumber = 100 A facility = 'BC').

This statement deletes test number 100 at facility BC from the data base.

DHL Assignment Statements

As is demonstrated above, retrieval and update statements operate on the
group and record level. DML assignment statements, therefore, are used to
build groups and records and to extract individual data items, placing them in
Fortran variables.

Example 6

*D test.testnumber = 100
*D test-description = ICHARS
*D test.facility = IFACIL
*D ADD test

The first three statements build a test record from Fortran constant and
variable values. The last statement adds the new record to the data base.

Example 7

*D GET FIRST test
*D IDESCR = test.description

This extracts descriptive information that was stored with a test record.

Other DML Statements

In addition to DML retrieval, update, and assignment statements, several
other miscellaneous DML commands are provided. The OPEN statement opens a
specified data base, allowing other DML operations on it. The CLOSE statement

205

specifies the end of DML operations on a data base. The LOCK command must be
used prior to any update operations to prevent access by other users to the
data while changes are being made. The UNLOCK command can be issued after all
updates have been made.

Example 8

OPEN TESTGROUP . .
LOCK TiSTGROUP .

UNLOCK:TESTGROUP

CLOSE TESTGROUP

ANALYSIS OF A STRUCTURAL DESIGN PROBLEM

To illustrate a comprehensive use of the proposed data base model, we
draw on a real-life structural design problem query of a data base. This
application data base consists of input data for and corresponding output
data from a finite element structural analysis. Selected portions of this
data are desired as input to a structural sizing program.

The structural design data base contains a set of nodes defined on a
surface. Each node is described by its x, y, and z coordinates in 3-space.
A particular set of nodes can be connected to form elements, each of which has
a specified thickness. Information about all nodes and elements are assumed
to be stored in the data base prior to execution of the finite element analysis.

Finite element structural analysis is then performed at which time differ-
ent loads are applied to the nodes, and a displacement recorded for each node.
Similarly, for each element the resulting stresses in each direction are com-
puted and stored in the data base.

The DDL representation of this problem is shown in Figure 4. The data
base, named STRVCDESIGN, is composed of three logical records. Logical record-
type NODES describes all the nodes in the data base by a node number (the key
to that record type) and a position vector specifying that node's coordinates.
Record-type ELCON is used to represent the elements. Each element is uniquely
identified by its number (ELEMNO) and is described by a connectivity vector
containing the connected node numbers.

The third logical record type, STRUC, holds the computed results of the
finite element analysis. Each occurrence of STRUC contains a design variable
(the records key) and a test case corresponding to that design variable. Each

.test group contains the computed results of the different load cases. The
TEST group-type is uniquely identified by load case and contains a group called
DISP which describes the displacement at each node. TEST also contains the
group ELPROP, describing the thickness and stress on each element. The STRUC
records will presumably be constructed and added to the data base when the
analytical tests are performed.

206

I

After the data base is constructed, it is desirable to obtain the criti-
cal element in the design by computing maximum mean square stress for each
element in all design variables. This information would then be used as input
to the structural sizing program. Figure 5 shows a Fortran program with em-
bedded DML, statements‘which prints for all design variables,, the element number,
load case, stresses and thicknesses where mean square stress is maximum.

This application requires an iterative search of the data base for the
desired information. At each level of the hierarchical tree, the keys to each
record or group are saved if they provide access to the element number and
load case which satisfies the query up to that point. The use of the GET NEXT
WITHIN statement is required for this application, since the program must be
aware when the set of occurrences under a particular parent group is exhausted
in order to save the key of the next parent.

Thus, upon the conclusion of this exhaustive search, the keys to the
groups satisfying the query have been.saved and the appropriate values printed.

207

APPENDIX A

BNF DESCRIPTION OF THE DATA DEFINITION LANGUAGE

A BNF description of the data definition language is presented as follows:

<database definition>::= <database name> : DATABASE <record list> END
<database name>

<record list>::= <record declaration> 1 <record list> ;
<record declaration>

<record declaration>::= <record name> : <record body>

<record body>::= RECORD <component list> <protection part> END
<record name>

<component list>::= <component declaration> I <component list> ;
<component declaration>

<component declaration>::= <corn onent name> <redefines part> :
<sea ar or component type decl> I T
<co

T
onent name list> :

<sea ar or component type decl>

<redefines part>::= REDEFINES <component name designator>

<component name designator>::= <component name> 1 <record/group string>.
<component name>

<record/group string>::= <record/group name> 1 <record/group string>.
<record/group name>

<scalar or component type decl>::= <key part> <scalar type>
<invert or hash> I <component type>

<component name list>::= <component name> I <component name list> ,
<component name>

Ckey part>::= <empty> 1 KEY

<invert or hash>::= <empty> 1 INVERT I HASH

<component type>::= <structured type> I <scalar type>
4:.

208

APPENDIX A

<scalar tvne>::f <format .specificat&on> I COMPLEX I
<simple scalar type> 1 DOUBLE
<simple scalar type>

<simple scalar type>::= REAL I INTEGER 1 CHAR

<structured type>::= <array> I <group>

<array>::= <simple array type> I <special array type>

.<simple array type>::=‘ ARRAY (<dimension list>) <scalar type>

<dimension list>::= <unsigned integer> I <dimension list> ,
<unsigned integer>

<special array type>::= <symmetric> BAND <matrix specification> '
<scalartype> <bandwidth> , <storage mode> I
<symmetric> <matrix specification>
<scalar type> , <storage mode> I

<symmetric>::= <empty> 1 SYMMETRIC

<matrix specification>::= MATRIX (<unsigned integer> ,
<unsigned integer>)

<bandwidth>::= <empty> I <unsigned integer> LOWER <codiagonals> ,
<unsigned integer> UPPER <codiagonals>

<codiagonals>::= CODIAGONALS

<storage mode>::= BY <row or column> I <empty>

<row or column>::= ROW I COLLJMN

<group>::= GROUP <number occurrences> <component list> END
<group name>

209

I --

APPENDIX A

<number occurrences>::= [<unsigned integer>] I <empty>

<format specification>::= <fixed format type> I <floating format type>

<fixed format type>::= <fixed type designator> : <unsigned integer>

<fixed type designator>::= I I A I L 1 R

<floating format type>::= <floating type designator> :
<unsigned integer> . <unsigned integer> I
;iAgt;;n% t-jeEgz;;ignator> :

<floating type designator>::= F I E

<protection part>::= ACCESS <control> : <access list> END I <empty>

<control>::= CONTROL

<access list>::= <access specification> I <access list> ;
<access specification>

<access specification>::= <user list> : <access type> I PUBLIC :
<access type>

<user list>::= <user designation> I <user list> , <user designation>

<access type>::= READ I WRITE

<user designation>::= <identifier>

<database name>::= <identifier>

<record name>::= <identifier>

<group name>::= <identifier>

210

APPENDIX A

<component name>::= <identifier>

<record/group name>::= <identifier>

<identifier>::= <letter> I <letter> I <letter/digit string>

<letter/digit string>::'& <letter> I <digit> I
<letter/digit string> <letter> I
<letter/digit string> <digit>

<unsigned integer>::= <digit> I <unsigned integer> <digit>

<letter>::= A ol~l~l~l~l~l~l~l~l~l~l~~“~N~ *
<digit>::= 0111213141516171819

211

APPENDIX B

BNF DESCRIPTION OF THE DATA MANIPULATION LANGUAGE

A BNF description of the data manipulation language is presented as follows:

<dml statement>'::= <open/close statement> I <lock/unlock statement> I
<retrieval statement> I <update statement> I
<assignment statement>

<open/close statement>::= <open or close> <database name>

<open or close>::= OPEN I CLOSE

<lock/unlock statement>::= <lock or unlock> <database name>

<lock or unlock>::= LOCK I UNLOCK

<retrieval statement>::= <retrieval command> <record/group designator> I
GET <next> <record/group designator>
WITHIN <record/group string>

<retrieval command>::= GET <which>

<which>::= FIRST I <next>

<next>::= NEXT

<update statement>::= <update command> <record/group designator>

<update command>::= ADD 1 DELETE 1 MODIFY

<assignment statement>::= <fortran variable> = <record/group component
designator> I

<record/group component designator> =
<fortran variable> I
<record/group component designator> =
<constant>

212

APPENDIX B

<record/group designator>::= <simple designator> I
<record/
<simple %

roup designator;.
esignatorb

Qimple designator>::= <record/group name> <key specification>

<key specification>::= <empty> I (<key expression>)

<key expression>::= <sim le key ex ression>
<boo op> f <simp f

I <key expression>
e key express+0

<simple key expression>::= <key identifier> <relop> <expression> I
(<key expression>)

<expression>::= <term> I <addop> <term> I <expression> <addop> <term>

<term>::= <factor> I <term> <mulop> <factor>

<factor>::= <fortran variable> I <constant> I (<expression>)

<relop>::= < I > I L, I k I = I #

<boolop>::= A IV

<mulop>::= * I /

<addop>::= + I -

<record/group string>::= <record/group
<record/group

<record/group component designator>::=

name> I <record/group string>.
name>

<record/group string>.
<component variable>

213

APPENDIX B

<component variable>::- <simple component name> I <array component name>

<fortran variable>::= <simple variable> I <array variable>

<array component name>::= <simple component name> I
<simple component name> (<variable list>)

<array variable>::= <simple variable> (<variable.list>)l <simple variable>

<variable list>::= <simple variable> I <variable list> ,
<simple variable>

<constant>::= <number> I <character string designator>

<number>::= <integer> I <real>

<integer>::= <unsigned integer> I <addop> <unsigned integer>

<real>::= <unsigned real> I <addop> <unsigned real>

<unsigned real>::= <unsigned integer>.Cunsigned integer> I
<unsigned integer>. I
<unsigned integer>.Cunsigned integer> E <integer> I
<unsigned integer> E <integer>

<character string designator>::= <unsigned integer>
<character string type> :
<character string>

<character string type>::= H I R I L

<character string>::= <character> I <character string> <character>

<key identifier>::= <identifier>

214

APPENDIX B

<record/group name>::= <identifier>

<database name>::= <identifier>

<simple variable>::= <identifier>

<simple component name>::= <identifier>

<unsigned integer>::= <digit> I <unsigned integer> <digit>

<identifier>::= <letter> I <letier> <letter/digit string>

<letter/digit string>::= <letter>
I

<digit> 1
<letter/d git string> <letter> I
<letter/digit string> <digit>

<digit>::= OIl~j2~3~415~617~819

215

BIBLIOGRAPHY

Allan, J. J. [1977] (Editor) CAD Systems, (North-Holland, Amsterdam).

Bandurski, A E. and Jefferson, D. K. [1975a] "Enhancements to the DBTG
Model for Computer Aided Ship Design", Proc. Workshop on Data Bases
for Interactive Design (ACM, New York), 17-25.

Bandurski, A. E. and Jefferson, D. K. [1975b] "Data Description for
Computer-Aided Design", Proc. ACM/SIGMOD Workshop (ACM, New York). --

Codd, E. F. [1970] "A Relational Model of Data for Larger Shared Data
Banks", CACM, 13, 377-387.

Dale, A. G. and Lowenthal, E. I. [1976] "End-User Interfaces for Data
Base Management Systems", The ANSI/SPARC DBMS Model, Proc. of the
2nd SHARE Working Conf. on Data Base Management Systems, (Montreal,
Canada), edited by Donald A. Jardine, (North-Holland, Amsterdam),
81-99.

Date, C. J. [1975] "An Introduction to Data Base Systems", (Addison-
Wesley, Reading, Mass.).

DBTG of CODASYL Programming Language Committee Report [1971] (ACM, New
York).

Hirchsohn, I. [1971] "A Machine Independent Fortran Data Management
Software System for Scientific and Engineering Applications", Proc.
AFIPS FJCC 40, 501-513

Joyce, J. D. and Oliver, N. N. [1976] "REGIS - A Relational Information
System with Graphics and Statistics", proc. AFIPS NCC 45, 839-844.

Klinger, A., Fu, K. ,C. and Kunii, T. L. [1977] (Editors) Data Structure,
Computer Graphics and Pattern Recognition, (Academic Press, New York).

Martin, J. [1975] Computer Data Base Organization, (Prentice-Hall,
Englewood Cliffs, New Jersey).

Valie, G. 119771 "Relational Data Handling Techniques in Computer and
Design Procedures", CAD Sysms-, edited by J. J. Allan (North-Holland,
Amsterdam), 309-325.

Williams, R. [1971] "A Survq of Data Structures for Computer Graphics",
Computing Surveys 3, 1-21.

Williams, R. [1974] "On the Application of Relational Data Structures in
Computer Graphics", Proc. IFIPS Congress, (North-Holland, Amsterdam),
722-726.

216

1st occurrence of
record test

I test I

2nd occurrence of
record test

I test I

I pointnumber 1

(etc.)

Figure l.- Record occurrence structure of wind tunnel data base.

test

testnumber facility description
run

runnumber pointset

pointnumber point

name unit value

Figure 2.- Tree-graph representation of wind tunnel data base,

*D
"D
*D
"D
*D
*D
*D
"D
'*D
*D
*D
*D
*D
*D
*D
*D
*D
*D

testgroup : DATABASE
test : RECORD

testnumber : KEY 1:4;
facility : KEY A:lO;
description : A:50;
run : GROUP [loo]

runnumber : KEY 1:3;
pointset : GROUP [lo]

pointnumber : KN 1:5;

name : KEY A:lO;
unit : A:lO;

END pointset
END run

END test
END TESTGROUP.

group
type
point

group
type
pointset

group
type
run

Figure 3.- DDL representation of wind tunnel test data base.

record
type
test

219

*D strucdesign : DATABASE

*D
*D
*D
*D

nodes : RECORD
nodeno : KEY I:5;
position : ARRAY (3) F:10.3;

END nodes;

*D
*D
*D
"D

elcon : RECORD
elemno : KEY 1:4;
connec : ARRAY (4) 1:5;

END elcon;

*D
*D
*D
*D
*D
*D
*D
*D
:Q
9CD

*D
*D
*D
*D
*D

strut : RECORD
desvar : KEY I:3;
test : GROUP [loo]

loadcase : KEY I:3;
disp : GROUP [lOOO]

nodeno : KEY 1:5;
dispvec : ARRAY (3) F:10.3;

END disp
elprop : GROUP [3000]

elemno : KEY 1:4;
thickness : F:10.3;

END elprop
END test

END strut
END strucdesign.

Figure 4.- DDL representation of structural design data base.

220

C
C
C
C
C
*D
*D
*D

C
C
C
C
*D

JCD
C

,C
C
C
*D

*D
*D
C
C
C
C

C
C
C
C

open the data base and position at first STRUC
logical record occurrence, save key

OPEN STRUCDESIGN
GET FIRST STRUC

5 IDESVAR = STRUC.DESVAR
RMAX = -9999.

get next TEST group within previous STRUC occurrence,
save key

10 GET NEXT TEST WITHIN STRUC
IF(NSTATUS.EQ.1) GO TO 100

LCASE = STRUC.TEST.LOADCASE

get next ELPROP group within previous TEST group occurrence,
save key, pull out stresses

20 GET NEXT ELPROP WITHIN STRUC.TEST
IF(NSTATUS.EQ.1) GO TO 10
IELEM = STRUC.TEST.ELPROP.ELEMNO
SVEC = STRUC.TEST.ELPROP.STRESS

compute mean square stress via
function SFUNC, test for maximum

R= SFUNC(SVEC)
IF(R.LE.RMAX) GO TO 20

If R is max. so far, save it and all
key values

RMAX=R
NDESVAR = IDESVAR
NLCASE = LCASE
NRLEM = IELRM
GO TO 20

Figure 5.- DML-embedded Fortran program.

221

C
C
C
C
"D

*D
*D

C
C
C
C
*D
*D
*D

maximum mean-square stress found for one
design variable, print desired values

100 GET FIRST STRUC(DESVAR = NDESVAR).TEST(LOADCASE = NLCASE).
ELPROP(ELEMN0 = NELEM)

THICK = STRUC.TEST.ELPROP.THICKNESS
SVEC = STRUC.TEST.ELPROP.STRESS
PRINT 200,NDESVAR,NLCASE,NELEM,THICK,SVEC

get next STRUC record occurrence and repeat

GET NEXT STRUC
IF(NSTATUS.NE.1) GO TO 5
CLOSE STRUCDESIGN

200 FORMAT(.)
END

NOTE: Variable NSTATUS is assumed to be a status value returned by
the system. When NSTATUS = 1, all occurrences of the specified
type have been exhausted.

Figure 5.- Concluded.

222

19
ENGINEERING DATA MANAGEMENT: EXPERIENCE AND PROJECTIONS

David K. Jefferson and Bernard M. Thomson
David W. Taylor Naval Ship Research and Development Center

ABSTRACT

Experiences in developing a large engineering data management system at
the David W. Taylor Naval Ship Research and Development Center (DTNSRDC) are
described. Problems which were encountered are presented and projected to
future systems. Business applications involving similar types of data bases
are described. A data base management system architecture proposed by the
business community is described and its applicability to engineering data
management is discussed. It is concluded that the most difficult problems
faced in engineering and business data management can best be solved by
cooperative efforts.

INTRODUCTION

For a number of years prior to 1969, DTNSRDC was engaged in developing
various independent applications programs for use in ship design. From 1969
through 1976, much of our work involved the collection and coordination of pro-
grams into the Integrated Ship Design System (ISDS), which included develop-
ment of the Computer-Aided Design Environment (COMRADE) Data Management System,
and other Coniputer-Aided Design (CAD) work for use by the Navy in concept,
preliminary, and contract phases of ship design. In 1977, we were tasked to
begin development of CAD techniques for naval detail design and construction.

In this transition year we have spent considerable effort examining our
past experience in CAD, determining the radically different environmental
conditions and functional requirements of our new assignment, assessing the
impacts of relevant technological progress, and mapping our CAD strategy for
the new work.

The first half of this paper records some of the more significant reflec-
tions on our experiences and identifies trends related to engineering CAD and
data management. The second half notes many apparent similarities between
our requirements, anticipated problems, and solutions and those of the business
electronic data processing (EDP) community.

INTEGRATED SHIP DESIGN SYSTEM (ISDS)

ISDS is an interactive computer-aided design system developed by the Navy
to address concept and preliminary design of naval ships. ISDS consists of a
collection of some 12 design application programs which communicate data
through a central Ship Design File under the control of COMRADE. COMRADE

223

consists of the COMRADE Data Management System (CDMS), an executive system, and
a design administration system (refs. 1 - 7).

When ISDS was initiated in 1969, most of the application programs were
already in use as stand-alone programs, operating variously in batch, conver-
sational, or graphics modes. The principal objective of ISDS was to stream-
line the execution of this sequence of programs by cascading the data flow
among the programs through the Ship Design File.

Analysis of the development of ISDS provides some significant observations
which are presented below:

The Ship Design File (ref. 8) was designed using both the novel concept of
representing multiple logical views of the same real world entities (ship
components) using a plex data structure (ref. 91, and the concept of topologi-
tally represented ship subdivision surface and volume relationships in the data
structure. A simplified representation of the data structure is shown in fig-
ure 1. The resulting data structure served a collection of overlapping appli-
cations -- hull form definition, arrangements, powering, fuel consumption,
electronics, weight summation, and others -- with very little data redundancy
and a correspondingly high degree of data consistency. The tasks of traversing
and maintaining the plex data structure and the topological relationships are
performed by the application programs themselves, however, and represent a
significant amount of overhead.

ISDS used extensively the concepts of working files and "bookend integra- ,
tion." Since most ISDS programs already existed, pre- and post-processors were
developed for each program to transmit input and output data, respectively,
between the Ship Design File and the working file for each program. The work-
ing file enabled differences in data structure to exist among the Ship Design
File and various programs and enabled an engineer to develop several design
alternatives on separate working files before committing one to update onto the
Ship Design File, which contains only approved design data.

In retrospect, the "bookend integration" strategy (some call this "magic
glue" integration) proved- to be more expensive than was anticipated. The cost
of writing pre- and post-processors for some programs exceeded development
costs of the programs themselves. Study has shown that one significant cost
driver was incongruities in the logical definition of data entities as estab-
lished in different programs and files. Seemingly small, innocent differences
in logical data definition required great effort in developing mapping code
which guaranteed consistency.

Another problem encountered in the ISDS development was the difficulty in
freezing a version of an active stand-alone program for use in the integrated
system. These application programs had been developed by engineers engaged in
production design work and were not part of a regulated software maintenance
environment. Typically, several versions of a single program could be found, ;,
with the most utilized versions undergoing continuing modification by their '
various owner/users. By the time a copy of the program was integrated into
ISDS, a later, preferred version was in popular use.

224

-.- EOUlrYEKT IN COYIARTYEKn
-...- SURFACES BOUNOlllG COYPARTYEKTI

Figure 1. Simplified representation of ISDS Ship Design File.

While ISDS successfully streamlines the I/O data interfaces among applica-
tion programs, one of the more humbling realizations is that some of the more
difficult problems characteristic of controlling the manual design process
(e.g., redesign impacts of design modifications and levels of confidence in
data) have scarcely been helped at all by the system. In fac5, we may find out
that the CAD aspiration of making current design status continually available
to all designers in fact produces an untenable control situation wherein dis-
crete design status references no longer exist. Bono discusses control issues
raised by ISDS in reference 10. Eastman presents an excellent, current dis-
cussion of integrity and consistency in reference 11.

Finally, ISDS users experience a problem of data contention. Contention

225

occurs when two or more users simultaneously require data which each has
authority to modify, or when one user may modify data which other users are
using in "read only" status. Remembering that a user may "claim" data for per-
haps several days on an ISDS working file, data contention could prove to be a
significant obstacle if the units of data controlled are not sufficiently small.

COMRADE DATA MANAGEMENT SYSTEM (CDMS)

In 1969 and 1970, the pilot version of ISDS was developed with a list data
management system which demonstrated that there were indeed requirements for
a data management capability which used random access, which allowed multiple
relationships with a data entity, and which offered both conversational and
host language interfaces with the data base. A thorough canvas was made of
commercial data management systems then available, and none offered the
combined host language and conversational interfaces. This factor was the
major determinant in our make-or-buy decision which resulted in the in-house
development of CDMS.

CDMS serves ISDS well, but in retrospect we can see other factors which
should have been accorded greater significance in the make-or-buy decision. We
now know that data base management software has a tendency to grow and is
expensive to develop and maintain. CDMS never was seriously targeted for a
broad user base and could not afford the expansive development of commercial
systems which have now surpassed CDMS in most respects.

Whereas CDMS was once enforced as the standard data management software
for all Navy ship design programs, it has not proven sufficiently adaptable
to fulfill the expanding scope of naval computer-aided design. The most limit-
,ing constraint is the nonportability of CDMS. From the beginning, nominal
recognition was paid to portability, but in fact many aspects of it made
extensive machine-dependent use of CDC's 60-bit word length. The adaption of
CDMS to other machines would be a difficult and expensive undertaking.

CDMS does offer ISDS a'number of valuable features whose worth was not
initially recognized and which are not available in many commercial systems
even today. In CDMS, data elements are addressable by name; CDMS handles
intrablock (intrarecord) data managment. This allowed additional data
elements to be defined in existing block formats as ISDS grew without
modifying existing programs referencing the original data elements. Even
though the applications of ISDS were well identified at the outset and their
data requirements fairly well identified, a number of data block formats were
extended during development. This flexibility allows the addition of data
elements and the reordering of elements if the element names within a block
type are retained; it does not allow deletion of elements or relocating a
data element from one block type to another.

CDMS supports a "pointer" data element type which allows the formulation
of a plex, or network, data structure. Any block type can be related --
multiply related if necessary -- to any other block type. In designing the
ISDS Ship Design File, we made extensive use of this flexibility to produce an

226

elegantly-interconnected, nonredundant data structure (refs. 8 and 9). AS
discussed in the preceding section, however, this complexity exacted its costs
upon the application programs as it'was their responsibility to enforce the
data structure rules by maintaining the pointers.

ISDS data structure displays relatively low variety. Approximately 30
block types were defined for the entire data base. Where unique or rare
items of data occur, CDMS allows the spontaneous definition of an "undefined
data element" whereby data element values and their type/format designations
can be appended to a particular instance of any data block. .

TRENDS IN COMPUTER-AIDED SHIP DESIGN AND CONSTRUCTION (CASDAC)

Prior to 1977, CASDAC work.at DTNSRDC was principally for engineering
software for in-house Navy use in concept, preliminary, and contract design.
Recently, we have been tasked to address naval detailed design and construc-
tion. Currently this is performed by a myriad of independent ship design
offices and approximately 25 U. S. commercial shipyards. In this shift, not
only did our technical target mushroom, but our potential "user" changed from a
Navy organization to a geographically distributed group of organizations, each
under its own corporate management and in competition with most of the others.
The different design/construction methods in use require uniquely tailored
software: there are corporate policies dictating use of available computer
hardware of various descriptions and there is a considerable spectrum of
opinions and/or indifference respecting needs and methods in CAD. Planning,
directing, and encouraging CASDAC has suddenly taken on new challenges.

Notwithstanding the user-base problems, CASDAC is addressing a very
ambitious technical task spanning the many engineering disciplines and pro-
duction methods utilized in shipbuilding. Within a single shipyard, there
are many users and activities. CASDAC is presently performing a top-down
functional analysis to determine the scope, composition, interfaces, and
common development efforts of the six disciplinary oriented CASDAC systems.
This functional analysis is being followed closely by a data requirements
study which is to identify the major groups of data, establish a general
data structure, and determine a strategy for the use of data management
system(s). In short, we are carrying out a systems analysis of the sort that
has long been advocated by the business community for integrated systems, and
we are actually using "their" modeling techniques. In the commercial ship-
building sector, the Maritime-Administration-sponsored program, Research and
Engineering for Automation and Productivity in Shipbuilding (REAPS), has
recently identified the definition of a ship structural data base as a high
priority task. Simultaneously, DTNSRDC has identified a continuing need for
network data structure in detail ship design and has been experimenting with
Bachman diagrams and CODASYL-type logical data modeling techniques to represent
the various interrelationships among records in a ship design data base.

A review of the tasks to be addressed by CASDAC indicates a trend toward
the classical business type of EDP task. A large part of production shipbuild-
ing concerns itself with lists of materials, procurement of equipment, material

227

flow, planning, scheduling, and progress reporting. There is a diminishing
percentage of the classical computation-oriented engineering application.

Several top-level policy questions are facing CASDAC management:

With the diversity of user hardware, portability
appears to be necessary. Should all software
be developed and maintained to operate on hardware
supplied by several of the principal vendors?
Or does networking offer an alternative in the form
of distributed, centrally maintained software
on one brand of hardware?

Integratedness: How much, how soon? The
desire for short-term payoffs conflicts with the
hope for an eventual, total-optimized system.
Do we opt for top-down design and bottom-up
development? Do we approach the final system in
a series of progressively more integrated steps?

What roles should minicomputers and microcomputers
be assigned? What form of data management is
feasible for them?

With data management technology evolving so rapidly
and with definite requirements for handling complex,
multiply related logical data structures, what
strategy do we use for "jumping on the train"? Do
we buy the best current system and expect to
convert to the next generation after n years? Can
we predict the characteristics of the-future data
management system, and take steps now to ease the
transition?

The initial large-scale use of EDP in the technical aspects of shipbuild-
ing has been in N/C (numerical control) of steel cutting. Several commercial
software systems are in worldwide use, which allow definition of ship hull form
and basic structural geometry, parts programming, and nesting of parts on stock
plates. From this production-oriented foothold, CAD can be seen backing up
into the engineering departments and over into "soft" production areas such as
procurement and production control. The programming of each steel part is a
laborious and somewhat error-prone task. In a data explosion application such
as ship design, the earlier in the process that the manual-to-digital data load
is performed, the less data must be loaded. These phenomena, coupled with the-
benefits of CAD to engineering itself, are driving the CAD frontier,out of pro-
duction and up into design. Reference 12 is replete with examples of N/C EDP
usage into areas of drafting, work planning and control, hull calculations,
structural design, cost estimating, structural detailing, and material order-
ing. In reference 13, Hatvany, Newman and Sabin recognize the changing data
management requirements as the design passes from concept design through
manufacturing.

228

In naval ship design, the expanding domain of EDP becomes a both-ends-
against-the-middle situation. CASDAC has been working for some years to
develop CAD for use up through contract design. A current CASDAC goal is to
pass to shipyards files of digital design information along with the contract
specifications and drawings. These data will feed directly the shipyard detail
design programs which will inturn feed the N/C software.

Extension of EDP from production into engineering does not occur without
travail, however. Usage of computers in shipyard design has hitherto been
for isolated design problems, albeit some large problems like finite element
analysis. The concept of an integrated system relying upon a digital data
base for the primary definition of a design does not meet immediate acclaim.
Furthermore,. in many shipyards there is a distinct demarcation between the
engineering and production functions and between the organizational elements
performing these functions. Engineering is not anxious to experiment with
new methods for the sake of benefits to accrue in Production. There are
definite organizational hurdles to be overcome. Peter Cook of Tektronics,
Beaverton, Oregon, relates the same phenomenon in integrating the design and
production in the electronics industry. (See ref. 14.)

ENGINEERING DATA MANAGEMENT AND TRENDS

This section will extend and generalize the discussion of trends in
engineering data management, dealing first with trends in applications usage

-which impact data management, then dealing with specific characteristics of
the data itself in terms of typical data management descriptors.

References 13 and 15 are excellent descriptions of the current status of
CAD and of the characteristic requirements of engineering systems.

Applications

There is a clear trend toward more highly integrated engineering systems
which incorporate not only more pure engineering-applications but which include
also classical business-type applications. In reference 13, Hatvany, Newman,
and Sabin state:

The satisfactory solution to creating an effici-
ent output interface for CAD in each case requires
basic consideration of the integration of the
entire design, manufacturing and administrative
process. Without this, only partial and ad hoc --
solutions can be found.

Atkinson and Wiseman (ref. 15) go a step farther to cite situations calling
for interspersed performance of design functions with administrative functions,
which would preferably operate from a common data base.

Eastman, in reference 11, cites a number of large integrated design

229

systems currently being developed and discusses the implications, usage, and
development of the integrated data bases.

The shift toward higher integration will probably occur in stages of
increasingly larger, more integrated systems. Since this process for any
particular engineering system will be characterized by the continuing develop-
ment of new applications and by the process of restructuring smaller software
elements into larger aggregates, periodic restructuring of the data base is
to be expected and extensibility of data structure to accommodate new require-
ments will be a most important characteristic.

For stand-alone engineering programs and even modest-size special-purpose
design systems, a particular type of data requirement usually can be identified
as very important and the data management system selected and used to capital-
ize on dominance of data usage. As systems expand to encompass more functions,
we must plan for the data base and data management software to accommodate a
greater variety of usage.

As an example of the impact of greater variety, consider the response
requirements of engineering programs. Most specific programs tend to require
a particular mode of operation -- batch, conversational, graphics -- but even
small integrated systems often utilize batch and on-line techniques. As inte-
gration and the scope of engineering systems increase, we must expect applica-
tions to make demands upon the data base for a full spectrum of responses.

A major technological challenge is to resolve the conflict between the
high response demands of interactive CAD applications, and the inefficiency
inherent in data management by state-of-the-art methods such as the CODASYL
schema/subschema techniques. Current implementations, in order to provide
flexibility, require excessive overhead during execution; the problem and
possible solutions are discussed later in the section on the internal schema.

One often-cited distinction between classic business EDP and design appli-
cations centers upon the creative role of the CAD engineer in refining the
object of design from a vague concept in the designer's mind down through (at
least) complete fabrication instructions. This process is often represented
as the familiar "design spiral," which implies not only the addition of new
design data with each loop of the spiral, but improved values for estimated
data produced on preceding loops. Stand-alone programs often address a partic-
ular design problem resident upon a single loop of the spiral and hence are
not concerned with successive estimates of the same data. Integrated design
systems must recognize the cyclic refinement of data and must provide some
mechanism to recognize the level of confidence.

Scheduling and sequencing of design applications will also place demands
upon the data base. Although a typical execution sequence of design applica-
tions can be predicted in a complex engineering system, it is likely that no
particular design will see exactly that typical sequence. Such design is
characterized by iterations of design steps for local optimization, perhaps
loops involving -several programs each, and major design changes will necessi-
tate repetition of large portions of the design sequence. Amkreutz (ref. 16)

230

discusses the design sequence as governed by feedback of design variables which
are, of course, themselves products of the design. In other words, predicta-
bility of the design process is low, which predicates a demand mode of data
access, at least at the macro level.

This paper previously discussed contention for data by two or more users,
of which one or more held authority to update the data. A concept helpful in '
managing.data contention is boundedness of the data, that is, the degree to
which relevant data can be isolated to a particular application. Data used-
only by one application can obviously be controlled by governing the use of
that application. Data used by many programs present a much more difficult
control problem.

Data

An important descriptor of any data base is its size (i.e., the number
and length of its various types of records). Since inis paper we have made
no attempt to define a clear outer limit to the scope of functions considered
part of the engineering system, it is meaningless to postulate any specific
indication of size. We do know there are a lot of design data. Detail design
and construction documentation for a single ship can require 70,000 plans. The
production control program alone for one of our medium-size commercial ship-
yards requires half a dozen disk drives of on-line data. We know that the data
volume requirements are large enough that we must expect problems of scale.

.Recent work at DTNSRDC with several commercial data base management systems has
shown a marked drop in efficiency when the data base grows to a large size.
Certainly, an accurate projection of data base size and examination of its
impacts should be accomplished for each stage of integration expansion of a
system.

A discussion of enginering data base volatility must recognize at least
two classes of data: catalog data, which are relatively static files contain-
ing engineering constants, data respecting off-the-shelf equipment, etc.; and
design-dependent data, which are the description of a particular design product
and generally need not repeat catalog data. Whereas most catalog data are not
volatile, a few items such as cost may require regular update.

The volatility of design-dependent data is very high in the trivial sense
that the design file begins empty and after a fairly short lifetime is com-
pletely full. This is perhaps more properly viewed as the file's growth, and
is probably best represented by the exponential S-curve shown in figure 2. The
true volatility of design-dependent data (i.e., how much existing values are
modified) cannot be meaningfully defined in terms of "mods per week" because
of the growth rate, or "mods per execution" of an application because of the
relatively high boundedness between particular applications and particular
segments of the data. Perhaps the most meaningful definition would be to
state the number of modifications to data over the lifetime of the design-
dependent data base. It is also significant to recognize that data might
initially be modified several times in rapid succession, as in the working
file of a particular interactive application, then remain static on the central

231

. design file for the remainder of the design. Volatility on the central design
file concerns itself with sets of data which an application may repeatedly - -
modify and update and is particularly significant with those
not bounded to a single application.

sets which are

LONCEPT U.ELl VIRY
DESIGN TIME

Figure 2. Engineering data growth.

Design data which are unbounded often carry a requirement of timeliness,
I.e., a.need for immediate update so that current values are available to the
rest of the design process.

The variety of applications in an increasingly integrated engineering
system will demand a logical data structure of commensurate variety and of
increasing complexity. In pursuit of data consistency, integrated engineering
systems can no longer afford to ignore the precepts of nonredundancy and
normalization (refs. 17 and 18) in logical data structuring. Data structuring
for normalization will produce a very large number of record types and inter-
connection relationships, thereby introducing the complexity.

One source of requirements for relationships is the need in many engineer-
ing design applications for a flexible description of three-dimensional spatial
connectedness. Contemporary CAD systems (refs. 8, 9, 19, and 20) typically
record the topology of several types of real world entities with respect to
each other, and supply absolute coordinate data distinct from the topology.
Figure 3 is presented without full explanation to illustrate the complexity
of spatially connected data. Figure 3 is a Bachman diagram of the portion of
a ship structural data base representing stiffened steel panel construction
(e.g., hull, decks, bulkheads) as envisaged by DTNSRDC.

232

EX TEN f PROPER T/&S l l l l

5T/FF - 5F6i - END --------
. . . .

--- ---__
Bu?r- Jo/NTS _

t
BUTT- Jo/if- DE7 -- -- --

W&l D - 0.5s /GN EDCE WELD l -•-

LEGEND

Coh’N - COUUEC T/ V/TY PLr - PLATE 0-J SUr4F - SURFACE Is)
PET - DET.AA/L SEG - SEG IVENT ISI
MLD - MOLDED STIFF - 5 TffFENfR (5)
PC - PIEC E CS) STRUCT- STRUCTURE

e OUMNY RECORD TY?E RFQU/RFD Sy CODASYL
FOR MA?&‘- To - IVANY RELATIOrYSH/PS.

1

STIFF -lc- _ I ---
. . . .

I
$$
a\:

1
2 ST/FF -CUD - C&W -------

STlFf -PC - END l . . .

sr/FF -END - JET --- ----
..*. Eh’D - DISlbM

c

Figure 3. Bachman diagram, portion of ship structural data base.

BUSINESS APPLICATIONS

Martin (ref. 21) discusses three levels of activity in management:

0 "Routine operations and reflex actions,"
which "can be almost completely automated"

0 "Well-defined management operations," which
"can be partially automated but need management
involvement"

0 "Strategic planning and creative decision
making," which "require intelligent human
thinking with assistance from computers"

Computer operations of the first type are familiar to nearly everyone: "record-
ing customer orders," "payroll," etc. Computer operations of the second type
are familiar to many people: "sales management," "production scheduling," etc.
The possibility of providing computer support for operations of the third type,
however, is apt to be surprising: 'directing research' and 'choosing new prod-
uct lines" are examples of this type of operation. Business applications of
this third type require systems similar in many respects to engineering
systems: flexible query languages and report generators, tools for model
building and simulation, and sophisticated mathematical analyses.

Operations which may be very surprising to many people in engineering have
been developed by the Naval Supply Systems Command to provide logistics support
to the Fleet. Current orientation is tending a great deal toward support of
weapons systems rather than individual inventory items. For example, a large
part of the computer resources of the Navy's current logistics system is con-
sumed by the production of load or allowance lists, which specify the material
(repair parts, tools, consumable items, etc.) needed by the various supply
echelons (ships, tenders, etc.). Clearly, engineering data such as weight and
volume are necessary. Configuration status accounting is a new application
which will assist in recording changes to weapons systems, planning budgets,
planning alterations, etc. In general, keeping better records to reduce hard-
ware and software costs. Both applications require detailed technical data,
accessible through rich data structures.

Applications requiring weapons-system data include management of repair-
able items and generation of maintenance plans; these are complex applica-
tions involving engineering and maintenance data which are now entered manual-
ly* Other applications involve long-range planning and require data from very
early in ship planning and design. A great deal of manual effort could be
avoided if it were possible to automatically extract weapons-system data from
an engineering data base and add it to the logistics data bases. Even more
desirable would be to include supply and maintenance specialists in the design
cycle to ensure that the ship ran not only perform its mission but can also be
effectively and efficiently supported logistically.

The previous examples illustrate the poi,nt that business data may involve

234

many of the problems associated with engineering data; in fact, business data
may even be one of the products of engineering. It is reasonable to suppose
that the common ground between business and engineering will become larger and
more significant in the future as both engineering and business data management
expand in scope.

The following sections explore a further area of commonality, coping
with the complexity of such enormous systems.

THE NEED FOR A THEORETICAL FOUNDATION

Both engineering and business data management have need of a theoretical
foundation upon which to base future development and standardization efforts.
Such a theoretical foundation should bring order to the great variety of
problems which are encountered and should simplify the search for solutions.
In addition, it should enable us to anticipate and plan for future problems
and solutions. Also, it must be a base for the analysis and solution of
fundamental problems involving systems of great size and complexity. It
must not be limited to a narrow technical field such as the design of query
languages or data base structures.

In 1972 the American National Standards Institute Committee on Computers
and Information Processing, Standards Planning and Requirements Committee
(ANSI/X3/SPARC), established a Study Group on Data Base Management Systems.
The task of the Study Group was to determine what aspects of Data Base Manage-
ment Systems (DBMS'S) were suitable for standardization. A report was pub-
lished in 1975 (ref. 22) which outlined a gross architecture for information
systems. The purpose was to determine the essential components whose internal
structures would be defined by individual developers but whose interfaces would
eventually be standardized. In fact, many independent components, such as data
dictionary/directories, teleprocessing monitors, query languages, report gener-
ators, and DBMS's can now be combined with each other. In the following, only
a small but significant part of the Study Group's work will be discussed.

The Study Group proposed that there should be three distinct data base
schemas. The "conceptual schema" is a description of the logical (i.e.,
implementation-independent) structure of all of an organization's data base,
including anticipated future additions. An "external schema" is a description
of the logical structure of the data known to a particular application area;
it is similar to the CODASYL DBTG subschema (ref. 23). The "internal schema"
is a description of the physical (i.e., implementation-dependent) structure of
the entire data base. Mappings are defined between the internal and conceptual
schemas and between the conceptual and external schemas. Clearly, direct
mappings between internal and external schemas are possible. These could be
more efficient than the composite mappings, but would be less flexible; a
change to the internal schema would require a new direct mapping for each
external schema, rather than a single new mapping between internal and con-
ceptual schemas. Obviously, high performance also has a high cost in develop-
ment, so it should be limited to those application areas where it is necessary.

235

I

The use of two distinct schemas to describe the logical and physical
aspects of the entire data base provides other significant advantages over the
single schema of the CODASYL DBTG schema (ref. 23). Obviously, there is
increased separation of logical and physical descriptions, and hence greater
ability to manipulate the two independently. The conceptual schema might, for
example, be based on a relational data structure, while the internal schema
might be based on a network storage structure. More important, though, may be
the fact that the conceptual schema provides a tool by which persons familiar
with an organization's long-range goals, but with little interest or experience
in the technical aspects of data base design, may be able to determine, or at
least to understand, the development of the organization's data resources. In
both engineering and business, the organization's data base is simply too
critical for it to be beyond the comprehension of upper management. Further-
more, by separating logical and physical aspects of data into two schemas,
understanding of each by data base designers is also enhanced. The external
schemas, like the DBTG subschemas, simplify data description and provide
increased independence of data and programs for the application areas.

The following three sections further develop the use of the three types of
schemas for engineering data management. The objective is to show that the
problems of engineering data management can be divided into three quite dis-
tinct catagories. This analysis simplifies the problems though they still
remain extremely different.

There are no known implementations of the Study Group architecture,
though it is likely that present and future DBMS’s will evolve toward it. At
present, the architecture is invaluable as a tool for system designers, data
administrators, and researchers to study the problems of engineering data
management.

USE OF THE CONCEPTUAL SCHEMA IN ENGINEERING

The enormous complexity of engineering data management is due in large
part to the necessity for determining and enforcing integrity constraints
which can provide both consistency among different application areas and during
the iterative accumulation of detail and continuity between different levels
of design and construction. For example, ship design involves constraints on
weight distribution in order to provide the desired stability. Design pro-
grams can include code to perform checks on weight distribution, but this
leads to additional program complexity. If programs are developed in a
stand-alone mode, then adding the necessary checking for an integrated system
is particularly difficult since it is unanticipated in the program logic.
It is much more desirable to take checks out of a stand-alone program and
put them in a place where they can be invoked when necessary. Program inte-
gration then becomes a matter of simplication rather than complication. The
conceptual schema is a convenient place for recording integrity constraints
since they refer to logical rather than physical properties of data and since
they are relevant to many different application areas. Decisions about when
checks are to be performed, and how, and what will happen if they fail involve
performance considerations and specific application areas, and hence the

236

internal and external schemas. The conceptual schema is the place where integ-
rity checks are described; the mappings are the mechanism for performing them.

In general, the conceptual schema is a convenient place for recording
facts about the data base. Security constraints, although generally less
complex than integrity constraints, can nevertheless be significantly
simplified by expression in the conceptual schema.

The conceptual schema is also very appropriate as an aid to planning and
managing the design spiral. Control of iterations of design requires a time-
independent description of data; the internal and external schemas provide
snapshots at various phases but are inappropriate for long-range control. The
conceptual schema, as a model of the entire system, is independent of the
growth and 'contraction of data which necessitate modification of the internal.
schema to provide efficiency. The management of many generations of data,
viewed from many different disciplines, is also considerably simplified by the
conceptual schema.

Flexibility and extensibility will be major requirements for engineering
data management in the foreseeable future. Engineering systems will have to be
able to accommodate new application programs as they are developed, whether or
not they are designed to be used with the systems. New hardware -- central
processing units, mass storage devices, advanced graphics systems, etc. -- will
also have to be accommodated. The effective solution of engineering problems
will require utilization of all available software and hardware resources --
the conceptual schema provides a mechanism for understanding and managing the
engineering system as it develops. As noted earlier, flexibility is enhanced
by mappings between the internal schema and conceptual schema, and between the
conceptual schema and external schemas -- for example, n different versions of
the internal schema and m different external schemas require n + m mappings
through the conceptual sFhema, but n x m direct mappings. Both n and m will be
large in engineering systems. The conceptual schema also provid;s a v;hicle
for accommodating local hardware and software peculiarities in a more-or-less
standard engineering system.

Finally, the conceptual schema provides a mechanism for predicting and
managing bottlenecks and contention. This would be difficult in either the
external schemas (the points of view are too limited) or in the internal
schema (implementation details obscure the relevant relationships among data
items).

USE OF THE EXTERNAL SCHEMA IN ENGINEERING

Obviously, the primary function of an external schema is to provide a
view of the data base which is appropriate to a particular application area --
extraneous data are omitted, data structures are convenient, etc. This pro-
vides not only a simplification of program development, but an increased degree
of data-program independence and hence simpler maintenance of both programs and
data. The "application area" could actually be a generalized package such as
a graphics system or query language.

237

The external schema also provides adaptability to different user charac-
teristics. For example, an engineer who needs rapid response while exploring
a large number of possible designs may require a copy, or working file, of the
data relevant to him. The main data base would be unaffected by updates until
the engineer was satisfied with his design; at that point, it would be neces-
sary to resolve any conflicts between updates to the engineer's copy of the
data base and updates made to the data base by other users during his design
work. Clearly this way of operating is justified only if the cost of resolving
conflicts is less than the cost of avoiding conflicts through immediate up-
dating, considering the problems of contention. In general, applications may
exhibit varying degrees of integration -- from completely independent stand-
alone programs to programs which are designed from the beginning to be run with
the data base. The external schema provides the program with a fixed view of
its data; different mapping functions allow programs to exhibit different
degrees of integration according to type of usage, position within the design
spiral, etc.

It is characteristic of engineering data management for data relations to
grow and shrink -- for example, the complexity of the data grows rapidly during
design phases as more and more engineering disciplines interact, then shrinks
again during construction as the disciplines separate again. The external
schemas can greatly simplify programming by remaining constant despite changes
in the internal schema.

USE OF THE INTERNAL SCHEMA IN ENGINEERING

Engineering data management requires a high degree of efficiency in order
to increase human productivity and decrease computer costs. This can be
achieved in two ways: by developing very limited and rigid subsystems which
are finely tuned to a particular application, or by developing a flexible
system within which the data base can adapt to changing conditions. Clearly,
each alternative has advantages. Fortunately, the two are not mutually
exclusive; the mappings can provide different degrees of flexibility. Most
rigid is the creation of a highly efficient working file containing all data
relevant to a particular program, manipulated independently of the main data
base, available as long as needed, and then merged with the main data base.
Most flexible is a mapping of all data from and to the main data base as it is
needed or produced. Intermediate degrees of flexibility can be provided by
dividing the data between the working file and the data base according to the
probability and difficulty of problems caused by delayed updates, probability
of use, size, volatility, etc.

The general issue of efficiency and flexibility may be illustrated by the
contrast in two ways of implementing the same logical concept, the CODASYL
DBTG set (ref. 23). The set members may be indicated by an array of pointers
in the set owner, or by a chain of pointers from one member to the next. The
former structure is appropriate for processing complex queries; for example,
the records common to two sets are found by intersecting the two arrays. How-
ever, variable length records and a complex updating scheme are required to
implement pointer arrays. Pointer chains are easily implemented and updated,

238

but the previous example would require following at least one chain which
might contain many unneeded records. The point is not that one alternative is
better than the other, but that both are better than either, even at the
expense of additional'processing time and complexity.

Engineering data management poses uniquely difficult problems of
restructuring. The amount and complexity of data clearly increase greatly
with each cyle of the design spiral. The amount of data increases from
design to construction, but the complexity decreases at construction because
the data base'can be divided into parts relevant to different disciplines.
Application programs will be added to the engineering system over a period of
many years, requiring continual restructuring for efficiency. Accordingly,
it is extremely important to be able to understand, measure, model, and modify
the physical storage structures. The mapping again provides varying degrees of
efficiency and flexibility. A mapping which is produced at the time a program
is compiled can be quite efficient but is obvious1.y rigid and inconvenient to
modify. On the other hand, a mapping driven by an easily changed table is apt
to be much less efficient.

A further advantage of the internal schema, significant though less
important than the preceding, is the fact that new developments in hardware and
software can be utilized with little impact on the logical data base, as
described in the conceptual schema, or on the application programs or users.

GENERALIZATIONS

The preceding four sections have analyzed problems in engineering data
management from the perspective of the three different types of schema. The
first objective has been to demonstrate that such problems of understanding,
management, programming, and efficiency are really separable into three
groups. Engineering data management can be greatly simplified by solving the
problems individually rather than by trying to solve all of them by a single
technique. The second objective has been to demonstrate that there are a very
large number of logical and physical data base organizations and techniques,
each appropriate for particular applications but none appropriate for all
applications; therefore, the ability to choose from among a host of good
techniques is much more desirable than being limited to any single technique.

The conclusion seems fairly clear that a large user base for advanced
data management technology is necessary and attainable: necessary because
development of such a complex technology will be extremely costly, and attain-
able because many users in both business and engineering face the same prob-
lems. A broad user base will provide the support necessary to develop many
different user interfaces which all exhibit good (but not optimal) perform-
ance. A broad user base can also provide adequate maintenance and documenta-
tion, critical items which are frequently neglected for systems with small
user bases. .

Because many of their problems and proposed solutions seem similar to
those of engineering data management, it seems desirable to develop further

239

contacts with business data mangement. The report by the ANSI/X3/SPARC DBMS
Study Group, in particular, is an important source for long-range planning for
engineering systems. Although no implementations of the three-schema approach
.are known, existing models such as CODASYL DBTG seem to be developing in that
direction. Commercial data base management systems based on the three schemas
may be available within five years or less. At present, the three-schema
approach can be very significant as a tool for planning and designing
engineering systems. It should be of immense value to clearly understand the
problems and potentials of engineering data management, even if present data
base management systems tend to muddle the solutions.

CONCLUSIONS

The dominant trend in both engineering and business data management is
toward the solution of much larger problems, demanding a high level of integra-
tion of a large and varied collection of subsystems. The potential advantages
are great -- better solutions in less time at greatly reduced costs in human
resources -- but the risk of disastrous failures is also great. Systems are
simply becoming too complex and diversified to be constructed by ad hoc
methods. The problem is not principally that of building specialized sub-
systems, but of putting them together -- an application-independent problem
common to both engineering and business. Future engineering and business
systems will require not only technical advances in data management but also
greatly improved tools for understanding and managing system development,
operation, and maintenance. This provides a commonality of interest between .
engineering and business, in addition to the increasing overlap of applica-
tions. Accordingly, it will be necessary in the future to be exceedingly
cautious about accepting the old generalizations that engineering and business
problems demand fundamentally different solutions. Tools and techniques
developed by business will have to be examined very carefully before they can
be rejected as irrelevant to engineering.

The size of the engineering data management problem is due not only to
the masses of data and variety of application programs, but also to the variety
of users, the different modes of operation (conversational, graphics, batch),
and the integration within and between levels of design and construction.
Because we have very little experience with systems like this and because
we can anticipate a long period of development of new application programs,
flexible and extensible systems are absolutely necessary. Efficiency is also
important, but can only be obtained as a consequence of great flexibility in
the underlying data management software -- that software must be able to pro-
vide a capability for adapting to critical requirements (e.g., very high
volume and rapid response during interactive graphics) without causing changes
to application programs. The separation of schemas, in theory at least, pro-
vides such a capability. A large community of users from both engineering and
business is required to ensure that the theory becomes fact. An implementation
which would provide the necessary range of storage structures and alternative
mapping strategies would be costly and would require very experienced people
from a wide variety of disciplines.

240

Engineering data management is a field with a very great future. Many
problems exist, but the most significant -- data size, volatility, and complex-
ity, the variety of applications, and the complications introduced by the
design spiral -- are as much problems of understanding and management as they
are of computer technology. We should expect that future cooperative efforts
will provide us with the necessary technology plus the ability to use it
effectively. The value of a CAD system in the future will be measured not just
by.its effect on the designer, but by its ability to synergistically operate
with the "soft" production components of a total design and production system;
the union of engineering and business is inevitable, given the potential for
vast improvements in the total system.

REFERENCES

1. Rhodes, T.: The Computer-Aided Design Environment Project (COMRADE).
AFIPS Vol. 42, June 1973.

2. Willner, S., Gorham, W., Wallace, M., and Bandurski, A.: The COMRADE Data
Management System. AFIPS Vol. 42, June 1973.

3. Bandurski, A. and Wallace, M.: The COMRADE Data Management Storage and
Retrieval Technique. AFIPS Vol. 42, June 1973.

4. Tinker, R. and Avrunin, I.: The COMRADE Executive System. AFIPS Vol. 42,
June 1973.

5. Chernick, C.: The COMRADE Design Administration System. AFIPS Vol. 42,
June 1973.

6. Brainin, J.: The Use of COMRADE in Engineering Design. AFIPS Vol. 42,
June 1973.

7. Brainin, J.: Functional Description for the Integrated Ship Design
System (ISDS). David W. Taylor Naval Ship Research and Development Center
NSRDC Report No. 4663, April 1975.

8. Thomson, B.: The Plex Data Structure for Integrated Ship Design. AFIPS
Vol. 42, June 1973.

9. Bandurski, A. and Jefferson, D.: Enhancements to the DBTG Model for Com-
puter-Aided Ship Design. Proceedings of the Workshop on Data Bases for
Interactive Design, University of Waterloo, Ontario, Sept. 15-16, 1975.

10. Bono, Peter R.: Control of Design Data in the Integrated Ship Design
System. Annual Proceedings of ACM, Vol. I, Nov. 1974.

11. Eastman, Charles M.: The Representation of Design Problems and Mainte-
nance of Their Structures. IFIPS Working Conference on Application of
AI and PR to CAD, Grenoble, France, March 1978.

241

,, ,12. Proceedings of REAPS Technical Symposium, New Orleans, June 21-22, 1977.

13. Hatvany, J., Newman, W.M. and Sabin, M.A.: World Survey of Computer-Aided
Design. Computer-Aided Design, Vol. 9, No. 2, April 1977.

14. Cook, PeterG.: Computer-Aided Design Enhances Design/Production Process.
Design News, November 21, 1977.

15. Atkinson, Malcolm and Wiseman, Neil: Data Management Requirements for
Large-Scale Design and Construction. Association for Computing Machinery
(ACM) Special Interest Group in Design Automation (SIGDA) Newsletter,
March 1977.

16. Amkreutz, J.H.A.E.: Cybernetic Model of the Design Process. Computer-
Aided Design, Vol. 8, No. 3, July 1976.

17. Martin, James: Computer Data-Base Organization, Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1975.

18. Jefferson, David K.: Data Base Design, David W. Taylor Naval Ship Research
and Development Center Report 76-0111, June 1976.

19. Eastman, Charles M.: The Concise Structuring of Geometric Data for Com-
puter-Aided Design. Research Report No. 59, Institute of Physical
Planning, Carnegie-Mellon University, Pittsburgh, Penna., Nov. 1975.

20. Brochures respecting the Ship Structural Design System, SMTRB/BSRA Seminar,
British Ship Research Association, Wallsend Research Station, Wallsend/Tyne
and Wear, U.K., July 1, 1975.

21. Martin, J.: Principles of Data-Base Management, Prentice-Hall, Inc., 1976.

22. ANSI/XS/SPARC Interim Report on Data Base Management Systems. FDT (Bulle-
tin of the Special Interest Group on Management of Data, Association for
Computing Machinery), Vol. 7, No. 2, 1975, pp. l-140.

23. CODASYL Data Base Task Group Report, April 1971. Association for Computing
Machinery.

242

20

SYSTEM R: A RELATIONAL DATA MANAGEMENT SYSTEM

R. Lorie and Mario Schkolnick
IBM, San Jose

Paper not submitted for publication

243

A RUDIMENTARY CODASYL-STRUCTURED DATA BASE SYSTEM FOR

ENGINEERING APPLICATIONS

Bob Reynolds
General Dynamics Convair Division

Paper not submitted for publication

21

,

245

PANEL DISCUSSION - SESSION IV

SESSION CHAIRMAN:

22

Steve Sherman, University of Nevada

PANELISTS:

Dennis Comfort, Boeing Computer Services Company
Wayne Erickson, Boeing Canputer Services Canpany
Jim Browne, University of Texas.
Bernard Thomson, David Taylor Naval Ship Research and Development Center
Mario S.chkolnick, IBM
Bob Reynolds, General Dynamics Convair Division
Dave Jefferson, David Taylor Naval Ship Research and Development Center

PARTICIPANTS:

Bob Fulton, NASA Langley Research Center
Joel Snyder, Newport News Shipbuilding
Carol Price, General Motors Corporation
Stig Wahlstrcnn, Boeing Commercial Airplane Canpany
Walt Braithwaite, The Boeing Company

247

PANEL DISCUSSION - SESSION IV

Steve
Sherman

We'll have a few questions, and I'd like to bring up a
few issues that we might have to face in this field. These
issues essentially are associated with about three areas that
are connected, and we'll have the panel comment on them. The
first concern that I have is, are, we over-promising? Early
articles on nuclear energy, little short scenes, you'd see some-
thing where they'd say if you took the amount of uranium in a
golf ball, you could make an Ocean liner go across the seas
25 times. You'd think, well, what they have to do is get a
golf ball's worth of energy, of uranium, and you're in business.
I used to see things on solar energy that would go something
like: the solar energy that falls on one acre of land is
equivalent to all the coal burned in 24 hours in the United
States. Well, that's all you need, and you know it's all there.
All you do is turn it on when you need it. This year we're
spending 500 million dollars in research on solar energy and
they were trying to get a light bulb out of an acre of land,
something in that area. What about early data base management?
Now this is a real area. I was sort of associated with it when
people were first selling, well let's say around the post
IBM 7090 era, if any of you are that old. If not, there was
an era like that; a few were coming out with computers with big
operating systems although nobody would tell you this directly.
The impression was if you were the president of a corporation,
and you bought one of these computers, you would have a terminal
sitting beside your desk. You'd walk in in the morning and say
to the terminal, "What's happened today? Anything I ought to
be interested in?" It would say, "Well this problem is of con-
cern immediately," and then he'd show me a little data and out
would come the data and the corporate leader would say, "Well,
then sell this and stop manufacturing this," and turn this
machine off, and that would do it. Now nobody would say this
would happen, but that's the impression you got. That's what
I’m worried about. What's the impression for engineers? I
mean, do engineers think they're just going to sit in front of
the terminal and say, "Well is this machine going to fly now?
What if I make it twice as heavy? Will this ship sink if I
blow a 2" hole in the bottom of it?" Is it going to be that
easy? Are we making it seem that easy? That's what bothers
me, you know. It's like (I’m faced with this a lot in the
university), people come up to me and say, "Oh, you're in com-
puter science. I'd like to get one of those hobby computers.
Could it do my inventory?" Sure, it could. "Could it do my
payroll?" Absolutely. And then they'll ask you a bunch of
other questions, and there isn't anything they could ask you
that you could say, it can't do it. You always tell them it
can do it. What's left out there, is that they might have to
spend $10,000 for the software to do this. Spend 2 years get-
ting it debugged. Well, I’m worried about that; I'm worried
that we're over-promising. People are going to come up with

249

fantastic expectations, and be. disappointed when we deliver :
what's realistic. The other problem is sort of associated with
this: are we over-reaching? What if I told you that I was
going to come up with a system that would solve all physics
problems? Would you believe that? Why should I solve all
engineering problems? Or engineering data management problems?
There's a lot of problems in there. People have come up
periodically with . . . Oh, you've seen these programs that
prove theorems, general theorem-prover programs; well, why
aren't all the mathematicians out of business? Why don't we
just turn some of these programs loose, and have them prove a
bunch of theorems? What do we need people for? Actually
there's a language that has been designed, and I think it's
called the general problem solver, that's all we really need.
I haven't seen the success of this language; they put in a
couple of problems and out comes the solution, but nobody is
running their business based on that language. Is our goal too
grandiose here? The other thing I'm a little bit worried about
is: are we over-programming? As far as I can tell, one of the
great steps in this is you have to go around and find out what
people want. Then you put it in. What if I happen to bump
into an engineer that says he wants something really peculiar,
which engineers sometimes tell you these things, I mean should
I bend my system all around to put in this? How do I know he's
going to use this system? Is it worth making a system that I
can say does almost anything and have the complexity, which is
an issue I've raised before, that someone has to deal with?
There's an interrelationship that I've noticed between data
base systems and operating systems. I think operating systems
have gone through a stage tiere operating systems were initially
very simple (there wasn't much to them), someone could get on,
run a FORTRAN program, you couldn't do much; but then they
started getting more complex, because demands became more com-
plex. But to the guy who wanted to get on and just run a
simple-minded FORTRAN program all this complexity didn't help
him - it hindered him. It appeared that he was dealing with
a monster, essentially, when he really didn't want to. Now
I see the trend. There's a trend to go into large operating
systems, large computer systems , and now there seems to be a
trend toward smaller systems. I think one of the reasons you
have that trend is because a smaller operating system or a
smaller computer is essentially less complex. It might not do
everything the big system does, but it doesn't take, you don't
feel like you're dealing with a monster.

. . . (comment inaudible) . . .
classified as over-promising , over-reaching and over-programming.
Over-programming might go into one other area. I really haven't
heard it come up in this symposium, and that's the problem of:
are we dealing with the right kind of machines? I mean everybody
seems to be saying, 'Well, I've got a 6600. Well, I'm going
to take this machine and put a data base management system on
it." Are we asking for the right kind of hardware? For the

250

Dennis
Comfort

Wayne
Erickson

right kind of architecture? Maybe this problem seems so com-
plex because we're dealing with machines that were essentially
created to solve, or used to solve numeric problems, and we're
trying to put a different type of problem on it. Maybe we need
a new architecture. Well, I&d like to ask the panel for their
reactions. If they have any.

Why don't we start on this side?

The answers would be yes, yes, no, and yes. That was quite
a bit of questions there. 1.m going to try to tackle one of
them and then leave the others and this one to other members
and also everybody out in TV land. As far as are we dealing
with the right kind of machine, I don't know the answer to that
except I think to find out if we are, you have to try things
and see how they work. You have to experiment to find the
answers, and if you find out things don't work, then you have
to start looking at alternatives to solve those problems., A
specific thing that comes to mind is, if relational performance
is poor on existing machines then you have to start looking at
the concept of relational machines and identifying the charac-
teristics you need in those machines. Except you're not going
to know those characteristics unless you 'try something out and
find out where the drawbacks are of existing hardware. That's
what I have to say about that.

I'll try and address the question of over-programming.
What comes to my mind in over-programming is many times an
application will really be a small application, but a person,
when he tries to use a particular data management system, might
have a system that is really an overkill and for his applica-
tion is an expense to run because it has a lot of capabilities
he never uses. Maybe paging techniques he never needs. Maybe
we're kidding ourselves if we try to come up with one system
which really meets everybody's needs, but maybe what we really
need is a good set of small systems for the small users and a
nice orderly way in which he can migrate to bigger systems as
his data base grows and as his applications grow in complexity.
So I would say, yes, we're probably over-programming for a lot
of the small users. And a lot of applications are small
applications.

David
Jefferson

My answers would be somewhat different, I think. I think
the really important question was not among the list, and that
is: do we really know what we're doing? And I would say that
the answer to that is a resounding, No, we don't, The reason
I say we don't know what we're doing is that people have looked
at very, very isolated parts of the data management problem,
and consequently they have missed some of the problems which
are inherent in the whole thing, but are not apparent in little
pieces. Thinking particularly of one of the comments that came
out at the panel discussions this afternoon, and that is the

251

observation that user interface may take up to‘85 percent of
the total coding for a system. That is absolutely ridiculous
for all of these people to be sitting down and doing essentially
the same thing over and over and over for each little system,
because there are not that many different user interfaces. Now
we come to the question of complexity and over-programming.
Now what is going to cause more trouble for people? Learning
a large number of different interfaces (possibly all of them
simple, but all of them different, all of them having pecu-
larities which mean that they can't interact with each other),
or is it going to be easier to sit down and learn one thing
from possibly a 300-page manual? Well, my answer would be that
in the short term, it's easier to learn something that's very
simple, that solves a small part of the problem, but in the
long range, what we're trying to do is to help people do their
work, and that requires looking at everything that's involved.
The big thing. Now when we're in college, we look at these
300-page things, and we somehow digest them. I don't think
that we have lost so much when we leave the ranks of academia
that we have to say nothing will be read that's over ten pages.
It's laziness, it's inability or lack of willingness to look
at what we're really doing and try to do our jobs better. Now
that's enough philosophy,' I guess, so I'll turn this over to
the next people.

Bernard I'd like to address the statement that Steve made on
Thomson I cautioning us on over-reaching. I guess my concern is a little

bit mOre - that we're doing too much under-reaching. I think
there are certainly cases where, I don't know . . . Rerhaps
Mario, you know he's in the sales business, and IBM is trying
to push software and hardware - maybe he needs to address this
question too. I think that this group as a whole is knowledge-
able enough to recognize what is available in the near term and
what is really a good distance off. So I'm not so concerned
about the over-reaching as I am that when we have a requirement
stated to us, or one of us is tasked to go out and develop a
system to fulfill such a need, that the present requirements
are the only requirements which are considered. As Dave and I
tried to point out, we feel that the effectiveness of the next
generation system in your company and the next generation sys-
tem in my company, the cost effectiveness of these systems is
going to be very much dependent upon how they can adapt to
future requirements and how they can change to meet those
needs.

Mario
Schkolnick

Now comes the marketing pitch. I think I said it before
I began my talk, that I'm in a research division of IBM, and
I used to make sort of the same kind of statements that have
been made here when I was at Carnegie-Mellon teaching. Then
about 2 years ago I joined the Research Division and I felt
that I was sort of outside of what you think the corporation
is. The Research Division is just another research institution

252

Bob
Reynolds

Mario
Schkolnick

Bob
Reynolds

really. We don't have any control over marketing or anything,
so enough of that. I think that one of the problems here is
people have presented different approaches to the creation of
a data base management system and there are enough of them
floating around that are relatively decent and perhaps can do
the job for a number of users. I think that the basic problem
that people are finding out now is sort of the same problem
that happens when canputers were first introduced and people
thought that that would be the solution and then they found out
that they have to write all the programs. Well, the same thing
is happening now. You buy the data base management system and
the next thing you say is, "How do I go about designing my data
base?" Then you look around and there's no one to help you.
That's one of the problems that people in the data base area
are now most concerned with. There's still a discussion of
which model should be used to represent your data, but that
discussion, really . . . the bulk of that discussion occurred
like 5 or 6 years ago. People have begun to move to a new
area, the area of data base design, how do you provide tools
for a user to implement these data bases, is now more hot. As
far as data base and machines, somebody made a comment if we
want to see what's happening on proposals for architectures for
data base machines, we should read the proceedings of the con-
ference on very large data bases in '78 and forthcoming, there's
a couple of papers on data base machines. I don't push the idea
of data base machines myself, but if you're interested in it
you're welcome to read the papers.

By that you mean the German conference?

Yes, in Germany.

I think it's in August or September. West Berlin. I
haven't quite figured how I'm going to talk my boss into
2 weeks.

Over-extending, over-promising, we're definitely not.
What we're looking at is just taking the information that we
have at hand today. I didn't hear anybody in the last couple
of days say that they're inventing new information; they're
just going to look at it and organize it and develop it in a
different fashion. A fashion that is presumably better struc-
tured to give them a path of subsequent activities - the design
activity - be it a decision in management or marketing or what-
ever. However, we are just taking existing information and
providing it back to the people, mostly back to the people who
created it in the first place, in a fashion that is really
meaningful to them. That, of course, is where the query is
important, where you get into getting back to the user, getting
back to the person who made it up in the first place. I don't

253

lb

think we're over-promising at all because we're really not
involving any philosophically new technology in that regard.
What I'm really worried about are some of the mechanics. Oh
heck, what have mechanics got 'to do with anything? Maybe we've
been in mechanics so long that we can't see that mechanics are
the problem. In that regard, I reflect back upon that business
of administration and ownership and the discussion that came
up yesterday about where do we permit ownership and how do we
cope with administration. The fact that business systems have
been exercising administration activities for quite some time
now, and the comment made by Susan yesterday about the fact that
we're starting where they were 10 years ago, I'd like to think
that we won't make the same mistakes they made. I think we all
know about some of those mistakes, one of them being in the
area of administration and ownership. It perhaps reflects
itself every time we get an error on our .credit card and we
try to deal with that system. We never find anyone who is
responsible for it because it's all part of the system. Maybe
we won't make the same mistake in developing or implementing
or using such systems. It's really not so much that it is
inherent in the system, it's inherent in the fact that we've
used it wrong, I think. Maybe because engineers are so much
more independent, so much more maverick, so much more posses-
sive than commercial or business-oriented or commerce-oriented
individuals, that we will not make that mistake; we'll have to
make some new ones, I guess. In that way we can come to accept
and to actually promote the sharing of information and display-
ing and integration of that information by the development of
these data base systems either on an individual discipline level
or on a product or project level. So in that regard I don't
see where we're evolving any new data base technology, or,
excuse me, any new information technologies. We're not over-
promising in that regard. If we're over-promising anywhere,
we're over-promising in the social regard. The way we're going
to try to turn the computer around from being the,dehumanizing
machine that it has been in the past, and start making it behave
like we'd all like for each other to behave. It's really a
rather basic, very simple concept or thing that we're going to
try to do. In the past we've sterilized ourselves and steril-
ized our information and I think we need to turn that around.

Can we open up for some questions from the floor?

Unidentified I think I'd like to put together just a couple of things
questioner that have come out in this whole idea of what we've seen. It's

more than a single thing primarily. Some of the systems that
have been installed .are required to be definitely administra-
tive, like the weight systems that involve almost straight-
forward applications of the commercial. That's not going to
go away1 because of the requirement for engineers to do record
keeping. But we included a new thing which is the numerical

254

Steve
Sherman

Bob
Fulton

Mario
Schkolnick

Steve
Sherman

data format for CADCAM which is something that is being devel-
oped currently. I don't think the data is as well defined as
it ought to be to be talking about data basing it yet. There's
an integration of those kinds of data that, once we've kept
track of the record that is right now a drawing, and we know .
whether it's stored in a vault or whether it's in check or
whether it's on the drawing board and when it's due out for
release, instead of associating that with a piece of paper, we
can now associate that with a data block which is numerical
data. The next level of that, I think, is another thing that
XI0 and SDMS talked about, which is just better ways of doing
scientific application programs. More in the current mainstream
of structured programming, rather than just using FORTRAN I/O,
and getting into the more modern programming techniques. That
can be an independent development; it's not necessarily tied
to these other two. I think in terms of what an engineer is,
there are a lot of them and there are a lot of different types
of engineers. A lot of what we've talked about today and
yesterday is how we do business today. That's changing, and
some of the engineers today are very afraid of the computer.
Others, given a tool developed by a computer programmer, will
take you to places the programmer never knew it could. There
are some guys there that just, given this tool, will run with
it, and they'll teach you things about the computer that you
didn't know. But there are not enough of them, so we're still
talking about so many nebulous things at one time that it's
hard to come out of it with a complete definition of where
we're going to do it. I think we've seen at least three dis-
tinct lines of development here and I don't think they're going
to be put together in the next week or so.

Do we have another comment or question?

Following up on his comment, I wonder if Mario would tell
us how much effort went into the development of SYSTEM R, so
that we could sort of size that with respect to some of the
other systems that people have built for experimental purposes.

Quite a bit.

Very definitive, very definitive. That sounds like the
answer we expected. I think it's very nice that IBM, in order
to just answer the academic question of whether relational data
bases are efficient, would put all that effort into developing
that. I have a few questions that I'd like for him to answer
myself, if I were sure that they would put that effort into my
questions. We have a question over here?

255

Joel
Synder

My question is directed toward Bob, and possibly anyone
else that would stimulate discussion about that. From an engi-
neering project point of view what are your experiences in
regard to a data base administrator and what I would call maybe
a little larger way of looking' at the data management function
fran a personnel point of view. what are your experiences in
your company, and possibly anybody else's company?

Bob As far as Convair Division of General Dynamics is con-
Reynolds cerned, the answer is zero from the engineer's point of view.

We have a full bureaucracy of data base administration from the c manufacturing operations backing up to ANSI1 programming, back
to design release and to design drawing sign-off, those sorts
of things are well administered - over-administered, depending
on who you talk to. Most of it, at least as far back as the
product walking out the door in the truck is concerned, most
of it is in the IMS system, which says something about the fact
that it has some utility. From the other side of the house,
remember I said I came frcmthe analytical side of the house,
the answer came out to be zero. There's been no practical
experience. There's been a lot of reaction, and from that
exposure to what we've seen the other side do, there's been a
lot of prejudice developed. In that regard, we have stepped
back a little bit and said that, well, we're going to have to
do this in a little more organized fashion so that we don't end
up fighting political or personal prejudice reactions and have
instead a more constructive approach to the concept of data
base administration, to the concept of configuration management
(I almost said configuration control). I think I identify, or
at least suggest a difference between, management and control.
My subjective image or vision of control is rigid, sterile,
inflexible, bureaucratic, irresponsible, to throw a whole num-
ber of little labels on it, showing considerable personal
prejudice, perhaps. These sorts of things are the dehuman-
izing things that immediately turn engineers, and especially
analytical engineers, off, because they haven't worked in that
environment before and their scrimmages with it have been at
best unpleasant. So we're going to very definitely walk very
carefully in that area. We're going to do that, I don't mean
to say that these plans are so definite, but we're going to do
that by burning both ends of the candle. We're going to look
at the function of data base administration, data base manage-
ment, configuration management, from a top down approach of the
convincing managers all the way down to first line supervision,
and at the benefits of such a development from the bottom up.
We're going to try to show the utility of the software. The
engineers are the people most familiar with the utility of
software. They use analytical tools daily. The vast majority
of the disciplines have been well integrated into the computer
within their own discipline, if not a cross-discipline. But the
vast majority of those applications suffer seriously either from
interactivity, interactive graphics, interactive programming

256

Steve
Sherman

Bob
Reynolds

Bernard
Thomson

Steve
Sherman

of one fashion or another. We have not really done nearly as
much as we should in that regard, and even where we have it's
been only very limited within a discipline, within a finite 1
element, with aerodynamics, or what have you. We want to pro-
vide better query utilities. More intelligent query utilities.
We feel that the query structure that the commercial systems
provide, as I suggested before, are just the obvious business
applications, but it takes a .great stretch of the imagination
to see how they provide much more than text-oriented benefit
to the engineer. The algebraic manipulation to the data is
really the need I feel, personally, and I think the activity
I'll be involved with will conclude this. We need to get more
of that going, so if we bring the engineer into the world of
the data base concept, into the world of query utilities, into
the world of on-line interactive manipulation, we quickly trans-
.gress into the sharing of information. The fact is that we've
developed those queries, that somewhere along the line the top
down data base administration development meets the bottom up
utility usage and there will be either a division or fusion
action somewhere in the middle, hopefully it will be a happy
marriage and a fusion joining, the acceptance of the user when
the manager comes down and says thou shalt do it.

I'd like to ask the questioner if he has known Bob Johnson
before this meeting?

Negative.

This is going to be a question. With. respect to control
of the data base, one of the things that I've heard at least
twice espoused by speakers at this conference which concerns
me a little bit, but I guess I need some explanation of it, is
that one of the requirements that individuals have felt is nec-
essary in engineering data bases is the requirement for the
individual engineer to be able to extend the schema. Maybe I
don't understand exactly how this is meant, but this gives me
worries about controlling a data base and what goes in there
and things like standards and conventions and who else is going
to be able to use that data base. To me this seems to be a
pretty radical departure from the control which has popularly
been written up - of the data base administrator having control
of the schema. Would anyone like to respond to that?

Let me enlarge on your question if I may. I've noticed
in this conference that there's been . . . as a matter of fact
this is called an engineering and scientific data management
conference. Now, it's not clear to me what's so unique and
peculiar about scientific data. I've listened to a few papers
and . . . you know I've heard it's different, but I haven't
seen it myself, and I. recall, Dr. Jefferson, in your joint talk,
said he found there is a similarity once you got past the bean

257

Mario
Schkolnick

counting stage although I think you can find some engineers
who do a little bean counting themselves.' This is the problem:
I don't think . . . I mean I've heard this question come up but
I've never had a satisfactory answer, you know. My general
feeling is if I gave you some payroll data and removed the fact
that these were the names of employees, numbers, and their rate
of pay, and the department that they worked for, and just said
these were alphabetic data and numeric data, and these were
related, that you wouldn't be able to tell the difference
between that and a lot of engineering data. Now SYSTEM R, if
I'm correct, the people that come up with SYSTEM R have not
claimed that they had to do anything special to take care of
engineering and scientific data management. SYSTEM R will do
anything. Is that correct, Mario?

You see, we're not over-promising anything - you are. We
understand that there are some engineering applications that
require, for example, graphic data types. We do not support
graphic data types, although a bunch of people there in the lab
decided to put another layer on top of SYSTEM R and go to sup-
port graphics and see if they could do it.

Steve
Sherman

In other words, that's just with the interface? But I
mean - the point I'm trying to make is just in this panel dis- . cussion, you think your system would be suitable for engineering
data, or obviously you wouldn't be presenting it here, and RIM
which has some of the same-looking tables to me, I mean you
table a matrix and so on and so forth, therefore their system
is primarily for engineering data sets. Now I didn't say
they're the same, but I can't see a significant difference.

Mario
Schkolnick

We think that a data base management system has to give
you a support capability, like an operating system does. It
has to allow you to define your data, to manage it for you to
do logging recovery, all those things. The user can build the
individual data structures on top of that, but the basic data
management system will provide all the facilities for him. He
doesn't have to worry about concurrent usage and things like
that. Now, I'd like to say a little bit about the amount of
preparation put into the project. What you have to understand
is these are research projects and people in the research
division spend a lot of time thinking and creating new things.
They go around and say, it would be really neat to have indices
implemented as xxx, and they go about, and they try for awhile,
and they test them, and say, no, bad idea, and they try another
thing. They keep doing that forever and ever* One day a
manager comes and says, "What have you been doing for the past
number of months," or days, or whatever, and then we show you
one application, and they get together, they write sane code,
and they show you some application , so it's very hard to try
and give you a definite answer how much time was spent creating

258

'. the system, because this was not a development system. If it
were a development system, you could measure it very exactly,
up to a minute, but it's not.

Steve I*$ like to ask the RIM people to comment on the difference
Sherman between their system, what they have special on their 'system

,, for an engineering data base, that the SYSTEM R people don't.
:

Wayne In regard to that, I think it's a little bit difficult to
Erickson identify the differences. Since SYSTEM R is a research project

you can't go and get SYSTEM R manuals to find out in detail
what it can do and what it can't do.

Steve
Sherman

But there are thousands of papers on SYSTEM R everywhere.

Mario'
Schkolnick

Yeah, all the externals have been heavily documented. You
can find papers in the literature. If you want to know what
the goals of the system were you go and read the literature -
they're all in open literature. The only thing that we were
told not to disclose is what kind of code there is. There are
things that are very low level, and you'd get into some busi-
ness problems. We were told to shut up on that, but otherwise
you can go and read the literature. There's a lot of documen-
tation and there's a lot going to come out, like people are now
beginning to write a lot of the things that were in their heads,
and people got together in little groups and discussed them.
Now they're getting to the point where everything is being
written down. There's going to be a lot of papers presented
on performance.

Steve
Sherman

Can we go to Jefferson here for a moment?

Dave I'd like to make a couple of observations. One of them
Jefferson is in support of what you've said, that I don't think it's very

obvious what the differences are between business and engineer-
ing data management. But I think the more important thing is
what the similarities are. The area of current very heavy work
in business is not in the mechanics of doing data base manage-
ment, not in developing DBMS's and working out more elaborate
data. structures. What it is in is requirements analysis. Try-
ing to work out ways of producing various schemas. Figuring
out what it is that a business does and how to design logical
data structures which would be appropriate for that business.
And here I think we have a great commonality in interest
between engineering and business communities. Because engi-
neering does need that same sort of thing. Thorough analyses
of what it is that was done and should be done.

Gteve
Gherman

There's a question frcm the floor?

259

Walter
Braithwaite

Bernard
Thomson

Steve
Sherman

Carol
Price

Mario
Schkolnick

Actually it wasn't a question. I wanted to complement
what Wayne responded to your question, as to the difference
between SYSTEM R and RIM. SYSTEM R, as was mentioned, is being
developed or is developing on IBM 370. RIM is an outgrowth of
the IPAD project, which is the exercise that depends on a CYBER
math ine. In order to exercise a relational system you had to
have something available , and that's another reason why they
actually developed samething. There's very little difference
in the two from what was shown. I wanted to address a number of
points that we made. The gentleman leaving, Bernard Thomson,
asked the question about the dynamic concepts of engineering
data. I don't think anyone really said that the engineer would
change the schema per se. But I think in some applications you
could envision, say, the interactive graphics world, if you did
have, a schema associated with geometric definition in order
to redefine some geometric entity, say, for example instead of
using a B-spline you use a different kind of spline. The think-
ing in terms of a relational concept - if you define a relation
into which you would put the elements which define such a curve,
it has to be dynamic fran that instant. If you're creating a
new entity in the system, there has to be administration over
that, yes, but not the engineer. It may be done on a much
higher level, so as to add it to the system, to add it to the
data base. On the other hand if it's a community type data
base at a lower level, then the engineer may have the ability
to create and change, but for formally released data, I wouldn't
expect the engineer to do that, and I don't think anyone really
said that.

I hope that in setting up a schema for particular systems
or applications that there would be sufficient generality in
the statement of the schema to allow for any commonly occurring
differentiations of modes of the setting up and recording of
the data. It seems to me to be a schema which is a little
short-sighted, if you put it up, and you call it a standard,
and you put controls on it; then many of the people that are
going to be using it have to make modifications in the schema
itself. I guess what I'm doing is putting in a plea here for
sufficient generality in the data management modeling and DBMS
systems to handle the commonly occurring kinds of usage.

Are there any other questions?

I wanted to ask Mario, what types of applications have you
found that SYSTEM R doesn't handle well and how large a data
base can you handle - data file?

There haven't really been very many studies like the ones
you're asking about. Right now we have . . . I don't know
which release number, but it's being built by pieces. Nobody,

260

Steve
Sherman

Stig
Wahlstrom

Steve
Sherman

Stig
Wahlstrom

Steve
Sherman

I think, has done things like you're asking. I, myself, played
with it with a 25 megabyte data base. Just to do a physical
data base design and logical data base design, I was testing
a couple of tools and was using the system to validate methods.
Originally the data base was a hundred megabytes: I just cut
it down to 25 because I ran out of disk space, but not because
the system couldn't handle it.

Go ahead, there's another question?

I'd like to make a comment on the dynamic nature of engi-
neering data and one of the things that I've thought about in
terms of such a requirement of engineering data is to look at
supply counters. They supply a fair amount of forms that you
can fill the information into. Most of the forms are kind of
for the business type. They are lined up for a number of hours
and plans. For the true engineering data, the most usable
forms are those that don't have any structure at all on them.
Most square sets of millimeter lines So they are I'm
sure used at least a hundred times as much as any other form,
if that is indicative of the engineering data, which I think
it is . . .

You just might mean that engineers can't write within
lines.

It could be that, but I don't think the engineering com-
munity is that bad.

Well, seeing that this panel has now answered all the
burning issues raised in this conference, I think it's about
time to adjourn the conference.

*U.S. GOVERNMENT PRINTING OFFICE: 1978~736-072/21

261

1. Report No.
NASA CP-2055

2. Government Accession No.

4. Title and Subtitle
,’

ENGINEERING AND SCIENTIFIC DATA MANAGEMENT

7. Author(s)

9. Performing Organization Name and Address

NASA Langley Research Center
Hampton, VA 23665

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546
Institute for Computer Applications in Science
and Engineering (ICASE), and The George Washington
University Joint Institute for Advancement of Flight
Sciences. Hampton, VA 23665

15. Supplementary Notes

3. Recipient’s Catalog No.

--7

5. Report Date
August 1978

- --._.
6. Performing Organization Code

8. Performing Organization Report No.

L-12043

10. Work Unit No,

510-54-03-01

11. Contract or Grant No.

13. Type of Report and Period Covered

Conference Publication

14. Sponsoring Agency Code

Conference held at NASA Langley Research Center, Hampton, Va.,
May 18-19, 1978.

16. Abstract

This conference was organized to provide a forum for recent advances in
the computer handling of engineering and scientific data and to create an
atmosphere for interaction between the developers of engineering and scientific
data management systems and the engineering and scientific users, The compi-
lation contains.‘papers which were submitted for publication and transcripts of
the four panel discussions. The subjects addressed were engineering and sci-
entific data management needs, application of data management systems to
engineering data, application of data management systems to scientific data,
and current research and development efforts.

7. Key Words (Suggested by AuthnrM)

Data bases
Data management

18. Distribution Statement

Unclassified - Unlimited

9. Security Classif. (of this report)

Unclassified
20. Security Classif. (of this page)

Unclassified

Subject Category 61

21. No. of Pages 22. Price’

268 $10.75

*For sale by the National Technical Information Service, Springfield, Virginia 22161

